Total number of printed pages:3

i.

UG/3rd/UCSE301

2021

DATA STARUCTURES AND ALGORITHMS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Question no. 1 and any four questions.

1. Choose the correct alternatives (Only write the correct option. For example xxii. (c)) 1×20=20

Stack is used in

	a) Recursion b) Invoking functions	c) All of the above	u) None of the doore
ii.	The other name for prefix notation is a) Reverse polish b) Polish	c) Infix	d) None of the above
iii.	Stack can be implemented using a) Arrays b) Linked lists	c) both a &	b d) None of the above
iv.	In Stack data structure, insertions and d a) both ends b) one end only c	deletions are made at () middle of the stack d)	None of the these
v.	What is the value of the postfix express a) Something between -15	sion 6 3 2 4 + - *: and -100 b) Somethi	ing between -5 and -15
	c) Something between 5 at	nd -5 d) Someth	ing between 5 and 15
	e) Something between 15	and 100	
vi.	The deque can be used	b) as a queue	

c) both as a stack and as a queue d) None of the above A linear list in which elements can be added or removed at either end but not in the middle is

vii. known as b) Queue a)Stack

> d) Heap c) Dequeue

The initial configuration of queue a, b, c, d('a' is at the front). To get the configuration d, c, b ,a viii. One needs a minimum of a) 2 deletions and 3 additions

a) as a stack

1

		LIBRAD
	 b) 3 deletions and 2 additions c) 3 deletions and 3 additions d) 3 deletions and 4 additions 	and the second second
ix.	The rear and front end of a linear queue is used for a) deletion, insertion b) searching, sorting c) insertion deletion d) none of these	ALMEMUT OF TOTAL
x.	Recursion may be implemented by a) linked-list b) stack c) queue	d) dequeue
xi.	Fibonacci function fib(n)=fib(n-1)+ fib(n-2) is an example a) Linear recursion b) Binary recursion c) Non-linear recursion d) Mutual recursion	of
xii.	Which of the following traversal techniques lists the elem- order?	ents of a binary search tree in ascending
	a) Pre-order b) Post-order	c) in order d) None of these
xiii.	a) 9 b) 5 c) 4	d) none of these
xiv.	Number of possible binary trees with 3 node is a) 3 b) 2 c) 4	d) 5
xv.	Total nodes in a 2-tree (Strictly binary tree) with thirty lea a) 60 b) 58 c) 59	aves are d) 57
xvi.	In a height balanced tree, heights of two sub-trees of eve a) 2 b) 0 c) 1	ry node differ by more than d) -1
xvii.	How many BST can be formed with 1,2,3,4? a) 1 b) 2 c) 4	d) 6
xviii.	A binary search tree is generated by inserting in order the 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24 The number of nodes in the left subtree and right sub a) $(4,7)$ b) $(7,4)$ c) $(4,7)$	e following integers: tree of the root respectively is 8,3) d) (3,8)
xix.	Which of the following methods has the best average cas b) Hashing b) Sequential	e complexity for searching? c) Random d) Binary
xx.	A sort, which iteratively passes through a list to exchange than it and then repeats with a new first element is called a) Bubble sort b) Quick so c) Heap sort d) Selection	ge the first element with any element less rt n sort
	2	

(a) Write the differences between stack and queue with example. [4]
(b) Write an algorithm to convert an infix expression to its postfix form using stack. [8]
(c) Convert A \$ B * C- D +E / F/(G+H) into its **postfix** form using stack. [8]

3.
(a) Construct the expression tree for the following expression tree: E = (2a +5b) (x-7y) ⁴ [6]
(b) Write the recursive function in C for the Towers of Hanoi problem. [6]

(c) Draw the recursive tree of Tower of Hanoi. [8]

(a) Write a function to add a node in a single Linked list [10]
(c) Complete the following function for reversing the elements of a linked list. [10]

ary tree fro	m pre an	d inorde	er travers	al.			[10]	
AB	D	1	E	J	С	F	G	K
DI	В	E	J	Α	F	С	K	G
e following	integers	can be	inserted	in an	empty	binary :	search tre	e in th
), 10,	90,	100,	40,	60,	20,	110),	10
	ary tree fro A B D I following), 10,	ary tree from pre an A B D D I B following integers 0, 10, 90,	ary tree from pre and inorde A B D l D I B E e following integers can be 0, 10, 90, 100,	ary tree from pre and inorder traverse A B D 1 E D I B E J e following integers can be inserted 0, 10, 90, 100, 40,	ary tree from pre and inorder traversal. A B D I E J D I B E J A to following integers can be inserted in an 0, 10, 90, 100, 40, 60,	ary tree from pre and inorder traversal. A B D 1 E J C D I B E J A F e following integers can be inserted in an empty 0, 10, 90, 100, 40, 60, 20,	ary tree from pre and inorder traversal. A B D I E J C F D I B E J A F C e following integers can be inserted in an empty binary s 0, 10, 90, 100, 40, 60, 20, 110	ary tree from pre and inorder traversal.[10]ABD1EJCFGDIBEJAFCKe following integers can be inserted in an empty binary search tree0,10,90,100,40,60,20,110,

6.

(a) Insert the	followin	ig keys i	n order	given to	build the	em into	an AVL	tree:		
azby	cxd w	ev								[10]
(b) Construct	a B-tree	of orde	r 3 with	the follo	owing da	ita			-	
50, 40,	60,	30,	70,	20,	80,	10,	90,	9,	99	[10]

7.

(a) Consider an array containing the following 8 integers: **30 10 70 20 50 60 80 40**. Suppose we want to sort the array using selection sort. Show the contents of the array after every pass. [10]

(b) Give the adjacency matrix and adjacency of the graph given in figure 1. [10]

2.