Total number of printed pages:

- 1

2023

Hydrology and Water Resources Engineering

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Central Institute Of Technology

1.	Writ	e short notes on any five of the following:	5×4=20							
	a)	Applications of hydrology in infrastructure planning and development								
	b)	Hydrological cycle (with a sketch), its major components and the water-bud								
		equation relating these components								
	c)	The two methods of estimating missing annual precipitation at a station								
	d)	Assumptions and limitations of Unit Hydrograph theory								
	e)	Usefulness of Synthetic Unit Hydrograph (SUH) and a sketch showing the								
		parameters of an SUH as per CWC's flood estimation reports for India								
	f)	Rating Curve (with a sketch) and its application								
	g)	Rational method (by giving mathematical expressions) of peak flow estimation								
2.	Briefly explain (any five) why is									
	a)	a rain gauge provided with a funnel to catch rain?								
	b)	a Self-Recording Rain Gauge preferred over an Ordinary Rain Gauge?								
	c)	an evaporimeter provided with a wire mesh at its top?								
-	d)	a ring infiltrometer a better choice than simple infiltrometer?								
	e)	a current meter accompanied with a fish weight?								
	f)	a crest staff gauge a better choice than a simple or a sectional staff gauge for								
		recording flood flow?								
	g)	a propeller type current meter is advantageous than a cup-type current meter?								
3.	a)	Name different categories of methods, and list the names of the commonly used								
		methods under each category for measuring (i) Evaporation, (ii)								
		Evapotranspiration, and (iii) infiltration (method-description is not required).								
	b)	Using appropriate unit-conversions and applying the water-budget equation								
		show that the evaporation loss from a reservoir in a month in which the								
		following data were recorded was 23.4 cm:								
		Average surface area of the reservoir: 20 km ²								
		Mean inflow into the reservoir: 10 m ³ /sec								
		Mean outflow from the reservoir: 15 m ³ /sec								
		Rainfall: 10 cm								
		Change in storage (reduction): 16 MCM (Million Cubic Meter)								
		Infiltration/seepage loss: 1.8 cm								

		c)	outside but close under Thiessen	to the to the	rain-gauge stations located inside, and three more stations the catchment's boundary. The details of the area (km ²) ygon around each station and the corresponding rainfall month are given below.									
												Н		
			Thiessen area	720	1380	144	0 10	40	900	2220	419	1456		
			Rainfall	135	143	-	2008 - CO.C-04	28	102	115	99	101		
		Stations B, D and F are outside the catchment. Determine the average depth												
			rainfall on the catchment in the given month by i) arithmetic mean and ii)											
			Thiessen mean methods. Which method would you prefer and why?											
	4.	a)	Draw a Intensity-Duration-Frequency curve giving the units of measurement.											2+2=4
			What is its usefulness in drainage design for urban flood control?											
		b)	(i) What do you mean by checking the internal and external consistencies of											
			data for use in water resources project planning and design?											
			(ii) Describe with suitable sketches a single- and a double-mass curve of annual rainfall.											
			(iii) Which type of graph is produced by a self-recording rain-gauge, and how can you get the intensity of rainfall from such a graph?											
		c)	Define return per								etwee	1 the		2+2=4
		-,	probability of ex-		and the second se									
	5.	a)											nd	4+2=6
	100.00		Categorize different techniques of measuring discharge of a river into direct and indirect methods. Describe two procedures of measuring velocity of a stream by											
			a current meter.			- 0	1,		U		•			
		b)	By observing the following photographs, describe the general purpose of the activities being carried out, the equipment being used, and the method to be										4	
			applied for meeting the purpose.											
		c)	What is the use											8+2=10
			following data fo							uging s	ite, est	imate	the	
			discharge by calc						-				_	
			Distance from	left	0.0	1.0	3.0	5.0	7.	0 9.	0 11	.0 12.	.0	
			water edge (m)											
			Depth of flow (n		0.0	1.1	2.0	2.5	-	1944 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -		.0 0.	.0	
			Velocity (m/sec)		0.	229	0.326	0.411	0.33	6 0.26	0 0.18	33 -	_	
c	6.	a)	Show typical hyd intermittent strea descriptors) of a	m. List	any eig	ght geo	ometri	cal pro	opertie	s (i.e., p	ohysica	1		4+4=8
		b)	descriptors) of a catchment on which discharge from the catchment depends.Define and show a sketch of a Flow Duration Curve (FDC), and describe its											3+3=6
			usefulness in planning of a water resource project.											

	c)	Estimate the minimum storage required in a reservoir to be planned if the monthly inflows and planned demands are as given in the following table.								
		Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec								
		Inflow (Mm ³) 50 40 30 25 20 30 200 225 150 90 70 60								
		Demand (Mm ³) 70 75 80 85 130 120 25 25 45 45 50 60								
7.	a)	Show by drawing a dimensioned sketch the different components, i.e., the	4							
		rising and receding limbs, the crest segment and the peak, the baseflow, the								
		basin lag and the time base of a flood hydrograph.								
	b)	Define an Effective Rainfall Hyetograph (ERH). Direct Runoff Hydrograph	3×2=6							
		(DRH) and φ -index.								
	c)	Define a Unit Hydrograph (UH). Name the methods of deriving a new UH of	2+2+6							
		duration different from the duration of a UH that is already available. Describe	= 10							
_		the method when the required duration is a fraction of a known duration.	2×2=4							
8.	a)	Answer the following Multiple-Choice Questions (MCQs) by choosing the								
		correct answer:								
		i) A 6-hr storm with uniform intensity 1.5 cm/hr produced a runoff of 72								
		mm. The average rate of infiltration (mm/hr) during this storm was[A] 3[B] 6[C] 9[D] 12								
		ii) If a 4-hour unit hydrograph for a catchment is approximated by a								
		triangle with base of 48 hour and peak of 200 m ³ /s, then the area of the								
		catchment (km ²) is								
		[A] 1728 [B] 3456 [C] 864 [D] 5184								
	b)	Write down (i) the Dicken's formula for estimating peak flow, and (ii) the	2+2=4							
		formula for calculating discharge using a venturi flume.	1997 Bar 1997 - 1987 -							
	c)	Write the general equation of hydrologic frequency analysis. Describe the								
		procedure for estimating the design flood of a specified return period for	12							
		practical application using Gumbel's method. Peak floods of 50- and 100-year								
		return periods in a river were estimated by Gumbel's Extreme Value Type-I								
		distribution as being 40809 and 46300 m ³ s ⁻¹ respectively. Estimate the peak								
		flood for a 300-year return period.								