2023

HYDRAULIC ENGINEERING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer ALL questions.

Wr	rite in details in the following:	5*4 = 20
a)	Terminal fall velocity	
b)	syphon	
c)	Gradually varied flow	
d)	Application of dimensional analysis	
a)	Calculate critical depth and specific energy for a rectangular channel.	8
	Assume the necessary.	
b)	Find the diameter of a circular sewer pipe which is laid at a slope of 1 in	12
	8000 and carries a discharge of 800 litres/s when flowing half full. Take the	
	value of Manning's $n = 0.020$.	
	तमसो मा ज्योतिर्गमय	
a)	Derive the 3D governing mathematical equation of motion for viscous flow	14
	(Navier-Stokes equation). Assume the necessary.	
b)	Write a short note on hydraulic jump. Draw the necessary figure.	6
a)	The water is flowing with a velocity of 1.5 m/s in a pipe of length 2500 m	13
	and of diameter 500 mm. At the end of pipe, a valve is provided. Find the	
	rise in pressure if valve is closed in 25 sec. Take velocity of sound is 1460	
	m/s.	
	a)b)c)d)a)b)	 Write in details in the following: a) Terminal fall velocity b) syphon c) Gradually varied flow d) Application of dimensional analysis a) Calculate critical depth and specific energy for a rectangular channel. Assume the necessary. b) Find the diameter of a circular sewer pipe which is laid at a slope of 1 in 8000 and carries a discharge of 800 litres/s when flowing half full. Take the value of Manning's n = 0.020. a) Derive the 3D governing mathematical equation of motion for viscous flow (Navier-Stokes equation). Assume the necessary. b) Write a short note on hydraulic jump. Draw the necessary figure. a) The water is flowing with a velocity of 1.5 m/s in a pipe of length 2500 m and of diameter 500 mm. At the end of pipe, a valve is provided. Find the rise in pressure if valve is closed in 25 sec. Take velocity of sound is 1460

If, the valve is closed in 2 sec., then find the rise in pressure behind the valve. Consider pipe to be rigid and bulk modulus of water is $19.62*10^4$ N/cm².

b) Write a short note on boundary layer separation. Draw the necessary figure.

7

5. a) Find the displacement thickness and momentum thickness for the velocity distribution in the boundary layer given by

12

$$\frac{u}{v_0} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

b) A rectangular channel with a bottom width of 4.0 m and bottom slope of 0.0008 has a discharge of 1.50 m^3/s . In a gradually varied flow in this channel, the depth at a certain location is found to be 0.30 m. Assume, Manning's n = 0.016. Determine the type of gradual varied flow profile.

8

