2024 (MAY)

FOUNDATION ENGINEERING Full Marks: 100

Time: Three hours The figures in the margin indicate full marks for the questions. Answer any five questions.

		Question body	Marks
1.	a)	State the assumptions of Boussinesq's equation. State and explain Boussinesq's equation for stress distribution	4+8=12
	b)	Define ground improvement technique and what are the objectives of ground improvement techniques? Write a note on a ground improvement technique used to improve cohesionless soil.	4+4=8
2	a)	Define caissons. Describe the various types of caissons	2+6=8
	b)	State the assumptions of Terzaghi's bearing capacity analysis. Draw a neat sketch to illustrate the failure pattern for general shear failure and evaluate the bearing capacity equation of a strip footing as visualized by Terzaghi	12
3	a)	Proportionate a pile group in a deposit of medium stiff clay ($c_u = 75 \text{ kN/m}^2$ / adhesion factor = 0.8) to carry a load of 1000 kN. The unit weight of clay is 16 kN/m ³ and FOS= 2.5	10
	b)	Describe the types of soil samples. Write note about the various types of soil samplers	4+6=10
4	a)	Determine the safe load that can be carried by a square footing 2m X 2m placed at a depth of 1.5 m below GL. Foundation soils have the following properties	10
		$\gamma = 1.65 \text{t/m}^3$, c = 1.4 t/m ² , FOS=3, Ø=20°, Nć=11.8, Nq́ = 3.8 and Nγ′ = 1.3	
	b)	Describe the pile load test with neat sketch	10
5		Write short note	5X4=20
		a) Borehole logs	
		b) Under reamed Piles	
		c) Vibroflotation	
		d) Efficiency of pile group	
6	a)	Determine the diameter of a circular footing to carry a concentric column load of 800 kN. The depth of the footing is 1.0 m. The soil is partly saturated and has $c = 50$ kPa and $\emptyset = 10^{\circ}$ and $\gamma = 18$ kN/m ³ . For $\emptyset = 10^{\circ}$, Nc =8.3, Nq= 2.5, N $\gamma = 1.4$. Use a factor of safety 3	15
	b)	Write difference between general shear failure and local shear failure.	5