2025

DESIGN OF SUBSTRUCTURES

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

"Assumptions made should be clearly stated"
"Use of IS Code is permitted"
"Illustrate answers with real sketches whenever required"

1.	a)						
		also mention their uses? What are the requirements for selection of a propertype of foundation.					
	b)	List the steps involved in a foundation design.	10				
2.	a)	Calculate the net ultimate bearing capacity of a rectangular footing 2m x4m i					
	plan, founded at a depth of 1.5 m below the ground surface. The load or						
		footing acts at an angle of 15 ⁰ to the vertical and is eccentric in the direction of					
	width by 15 cm. The saturated unit weight of soil is 18 kN/m ³ . The rate						
	loading is slow and hence the effective stress shear strength parameters car						
	used in the analysis. Here, $c' = 15 \text{ kN/m}^3$ and $\phi' = 25^0$. Natural water table is						
	a depth of 2.0 m below the ground surface. Use IS code recommendations.						
	b)	Design a continuous footing for a brick wall of 40 cm thick transmitting a load	10				
		of 150 kN/m. The allowable soil pressure is 100 kN/m ² . Assume unit of soil is					
	is 17 kN/m ³ . Use concrete with $\sigma_{ck} = 15$ MPa and load factor = 1.5. The base						
	the footing lies at 0.5 m below the ground level. Use IS 0						
		recommendations.					
3.		Design a combined footing for two columns A (40×40 cm) and B (50×50 cm)	20				
		respectively carrying axial loads of 900 kN and 1200 kN with a spacing of 4					
		m c/c. They are reinforced longitudinally with 20 mm bars. The property line					
		is at a distance of 0.5 m from the center line of the column A. Allowable soil					
		pressure of soil is 140 kN/m ² . Assume weight of footing and earth above as					
		10% of the total loads carried by the columns. Use M20 concrete mix and Fe					
		460 Grade steel.					
4.	a)	Describe various steps involved in the design of piles.	10				
	b)	It is required to support a tower on bored piles on a site where stiff fissured	10				

		clay is affected by seasonal swelling and shrinkage movements to a depth of 1.0 m . The unconfined compressive strength of stiff clay increases linearly from 40 kN/m^2 at $1.0 \text{ to } 160 \text{ kN/m}^2$ at 8.0 m . design the pile assuming a total load = 2500 kN , and a F.O.S. equal to 3. Use IS code recommendations.					
5.	a)	Determine the capacity of a 6.0 m long bored cast-in-situ pile in medium stiff clay having variation of undisturbed strength as given below:					
			Depth (m)	$C_u (kN/m^2)$			
			1.0	50			
			2.0	65			
			3.0	55			
			4.0	75			
			5.0				
			Kokrajhar :: Boo	loland 1			
			6.0	70			
	b)	What are the loads and forces to be considered in designing the foundation of					
		a bridge? How the allowable bearing pressure of a well foundation can be					
		estimated as per IS code recommendation?					
6.	a)	Explain the steps involved in the structural design of cantilever retaining wall.					
	b)	Write the design criteria for satisfactory performance of machine foundations.					
		Derive the expressions for damping factor in the forced and free vibrations.					

ESTD. : 2006 असतो मा सत गमय तमसो मा ज्योतिर्गमय