Sc-303/Maths-III/3rd Sem/2017/N

MATHEMATICS - III

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART - A

Choose the correct answer:

1×10=10

(a) The degree of the equation

$$\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 + 3y = 0 \text{ is}$$

- (i) 2 (ii) 1 (iii) 3 (iv) 4

(b) The degree of the equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \frac{dy}{dx} + 5y = 0 \text{ is}$$

- (i) 2 (ii) 1 (iii) 3 (iv) 4

Turn over

8. (c) The order of the equation

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right] \frac{d^3y}{dx^3} - 3\frac{dy}{dx} \left(\frac{d^2y}{dx^2}\right)^2 = 0 \quad \text{in}$$

(i) 2

(ii) 1

(iii) 3

(iv) 4

(d) Primitive of xdx + ydy = 0

- (i) $x^2 = 2y$ (ii) $y^2 = x$
- (iii) x + y = c (iv) $x^2 + y^2 = c$

(e) Primitive of $\frac{d^2y}{dx^2} + 4y = 0$

- (i) x = y
- (ii) y = e^{2x}
- (iii) $y = (A + Bx)e^{2x}$
- (iv) $y = A \cos 2x + B \sin 2x$

(f) Condition of exactness of the equation Mdx + Ndy = 0 is

(i)
$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 1$$

(ii)
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

(iii)
$$\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$$

(iv)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

- (g) The Integrating Factor of $\frac{dy}{dx} + \frac{y}{x} = x^2$ is
 - (i) x2

(ii) sin x

(iii) ex

- (iv) x
- (h) The Integrating Factor of $\frac{dy}{dx} \frac{2xy}{1-x^2} = x$ is

 - (i) $1 x^2$ (ii) $\frac{1}{\sqrt{1 x^2}}$

 - (iii) $\sin^{-1} x$ (iv) $\sqrt{1-x^2}$

(i) Complementary Function of

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \sin x$$

- (i) $c_1 e^x + c_2 e^{-x}$ (ii) $(c_1 + c_2 x) e^x$
- (iii) sin x (iv) e^{sin x}
- (j) Particular Integral of $\frac{d^2y}{dx^2} + y = 5e^{2x}$
 - (i) $\frac{5}{9}e^{2x}$ (ii) $\frac{1}{9}e^{2x}$
 - (iii) e^{5x} (iv) $9e^{2x}$

2. Write true or false;

1×5=5

- (i) Real root of the equation x³ + 2x 20 = 0 is the x-coordinate of the point of intersection of the graphs y = x³ and y = 20 2x.
- (ii) Roots of $x^2 + 3x + 2 = 0$ are the x-coordinate of the point at which the curve meets the x-axis.
- (iii) $x^3 = 1$ has three real roots.
- (iv) sin x = cos x has infinite number of roots.

(v)	The law $y = a + bx^2$ can be found from a
	set of observations (x, y) by transformation
	$Y = a + bX$ where $\sqrt{x} = X$.

- Answer the following questions: 1×5=5
 - (a) What are the three measures of central tendency?
 - (b) For the observations: 23, 13, 54, 34, 25, 32, 39; what is the median?
 - (c) Write the formula for variance.
 - (d) Find the probability of drawing a king from a pack of cards.
 - (e) Three coins are tossed together. Write down the sample space.
- 4. Fill in the blanks: 1×5=5
 - (a) Distance between (1, 2, -1) and (0, 2, 1) is ————.
 - (b) is the position vector of A(3, 0, 5).
 - (c) Direction cosines of a line parallel to x-axis are ----
 - (d) Dot product of 4i + 7j 2k and i +3j k is
 - (e) is the unit vector parallel to i + j + k.

5. (a) Form a differential equation whose primitive is $y = mx^2+2$

Or matter add property

Solve: xdx + ydy = 0

(h) Solve any four questions:

3×4=12

(i)
$$x \frac{dy}{dx} + \cot y = 0$$
, given $y = \frac{\pi}{4}$, $x = \sqrt{2}$

(ii)
$$x \cdot \frac{dy}{dx} - 3y = x^2$$

(iii)
$$(x + y)^2 \frac{dy}{dx} = 4$$

(iv)
$$\frac{dy}{dx} = \frac{y}{x} + \cot \frac{y}{x}$$

(v)
$$(y - x \sin x) dx + (x - 2e^y) dy = 0$$

(vi)
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

(vii)
$$y = px + p - p^2$$

(i)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^{2x} + x^2 + x$$

(ii)
$$\frac{dy}{dx} = \frac{y-x+1}{y+x+5}$$

6. Answer any two questions :

5×2=10

(i) Fit the linear law P = aW + b to the following data:

P: 60 70 90 100 125

W: 225 270 380 430 550

Hence find the value of a and b.

(ii) Solve graphically: $x^2 + 5x - 6 = 0$

(iii) The following values of x and y obey the law y = aebx. Find a and b.

x: 2.70 2.87 3.26 3.68 3.89

y: 3.86 4.2 5.1 6.3 7

(iv) Solve graphically: $x^3 = 111$

7. Answer any three questions: 4×3=12

(i) Find Mean and Median from the following data:

Class Interval	Frequency
0-10	3
10 - 20	5
20 - 30	7
30 - 40	9
40 - 50	4
50 - 60	Luntaguni adrim
60 - 70	4

(ii) Find Standard deviation from the following data :

Class Interval	Frequency
0 - 5	13
5 - 10	17 mg color
10 - 15	19
15 - 20	25
20 - 25	21
25 - 30	78.5 18 DEE
30 - 35	16
35 - 40	15
40 - 45	clinol 14 to avior
45 - 50	10

(iii) The following are the marks obtained by 10 students in a class in Mathematics and Physics:

Mathematics:	80	45	55	56	58	60	63	68	70	75
Physics:	81	56	50	48	60	62	64	65	70	74

Compute coefficient of correlation.

(iv) Find Mode from the following data:

Marks	Number of students
Below 10	ansaran vi3umura
Below 20	10
Below 30	13
Below 40	20
Below 50	37
Below 60	42
Below 70	45
Below 80	48
Below 90	50

- (v) From a pack of cards two cards are drawn at random. Find the probability that
- (a) they are kings.
- (b) they are red cards.

- (a) Find the direction cosines of the line (i) joining (1, 0, 7) and (4, 3, 2).
 - (b) Find the ratio in which the line joining the points (2, 4, 5) and (-3, 5, -4) is divided by the x-plane.
- (ii) (a) If a = i 3j + 3k and b = 2i 4j + k, find $(a + b) \times (a - b)$.
 - (b) Show that 21 j + k and 1 3j 5k are mutually perpendicular.