RETEST EXAMINATION-2019

Semester: 3rd

Subject Code: Sc-3032

MATHEMATICS - ITI

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instruction:

- 1. All questions of PART-A are compulsory.
- 2. Answer any five questions from PART-B.

PART - A

Marks - 25

Fill in the blanks:

 $1 \times 10 = 10$

CENTRAL INSTITU

- (a) If z = f(x, y) partial derivative of z with respect to x is denoted by
- (b) Number of independent variables in an ordinary differential equation is

[Turn over

(c) The degree of the differential equation

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}} = k \frac{d^2y}{dx^2} \text{ is } \underline{\hspace{1cm}}$$

- (d) Integrating Factor of $x \frac{dy}{dx} 3y = x^2$ ıs.
- <u>@</u> A differential equation Mdx+Ndy=0 is said to be Exact if _____.
- \oplus An equation of the form y = px + f(p) is known as _____.
- (g) The Auxiliary Equation of [aD²+bD+c]y=ex
- (h) The Particular Integral of $[D^2 + 1]y = x^2$ is
- Ξ 53, 20, 33, 38, 56, 43, 40 is The range of the observations: 32, 28, 31,
- 9 The sample space in the throw of a dice is
- 2 Write true or false

- If $z = x^2 \sin(xy)$, then $\frac{\partial z}{\partial y} = x^2 \cos(xy)$
- 92/Sc-303/Maths-III \mathfrak{S}

- (b) A differential equation is an equation that involves differential coefficients.
- <u>ල</u> $y = A \cos x - B \sin x$ is a solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$.
- <u>a</u> If A is a singular matrix, then A-1 exists.
- @ Equations reducible to homogeneous form is called Bernoulli's equation.
- data is called Scatter Diagrams Diagrammatic representation of bivariate
- NS TECHNOLOGY ROBERT Coefficient of correlation and coefficient of variation are related quantities
- Ξ The probability that a leap-year selected at random will contain 53 Sundays is '2/7'.
- Ξ rows and 'n' columns. The transpose of a m × n matrix has 'm'
- 9 If A is a non singular square matrix, then $|\mathbf{A}| \neq 0$.
- Ų. Choose the correct answer:

- (a) For a square matrix A, $A \lambda I$ is the
- (i) Characteristic equation of A
- 92/Sc-303/Maths-III

 \Im

[Turn over

- (ii) Characteristic matrix of A
- (iii) Characteristic polynomial of A
- (iv) None of the above
- Two points belonging to the solution set of $2x + 3y \le 6$ are
- (i) (2,0), (3,0)
- (ii) (0,2), (0,3)
- (iii) (0,0), (3,1)
- (iv) (0,0), (2,1) CENTRALLIBRARY #
- (c) The Optimal Value means
- (i) Maximum value
- (ii) Minimum value
- (iii) Maximum or Minimum value
- (iv) None of the above
- (d) The solution of Cosx = Sinx, $0 \le x \le \frac{\pi}{2}$ is
- (i) $\frac{\pi}{3}$
- (ii) π/6
- \equiv $3 | 2\pi$
- (iv) $\frac{\pi}{4}$

- (e) The graphs of trigonometric functions are
- curves
- (ii) straight lines
- (iii) both curves and straight lines
- (iv) None of the above.

Marks - 45

- COMPANIENT TOTAL OF YOUR (a) (a) If z = f(ax + by), show that $b \frac{\partial z}{\partial x} - a \frac{\partial z}{\partial y} = 0$.
 - (b) Form a differential equation:

$$y^2 = Ax^2 + Bx + C$$

- (c) Solve: $(x^2 + x + 1)dx + (y^2 + y + 1)dy = 0$
- 5. Solve the following:

3×3=9

(a) If
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$

show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} + z \frac{\partial u}{\partial x} = -u$$

- 92/Sc-303/Maths-III
- 4

- 92/Sc-303/Maths-III
- (ড

(b)
$$(x^2 + y^2)dx = 2xydy$$

(c)
$$(x+1)\frac{dy}{dx} - y = e^x(x+1)^2$$

6. (a) Solve:
$$\frac{dy}{dx} + y \cot x = \cos x$$

Solve the following simultaneous linear equation: 3x + 4y = 5; 2x - 7y = 1near near CENTRAL LIBRARY

(c)
$$\frac{d^2s}{dt^2} + 4\frac{ds}{dt} + 13s = 0$$

7. Solve the following:

 $3 \times 3 = 9$

(a)
$$(12x+5y-9)dx+(5x+2y-4)dy=0$$

(b)
$$xy(p^2+1) = (x^2+y^2)p$$

(c) Solve:
$$(D^3 - 3D^2 + 3D - 1)y = e^{2x} + \sin x$$

00 (a) Find the Mean and Mode from the following data:

Freq. : 4	Class: 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
24	20 20-30
21	30-40
13	40-50
5	50-60
u	60-70
5	70-80
8	80-90
2	90-100

92/Sc-303/Maths-III

9

(b) Draw the graph of $y = \sin x$, $-\pi \le x \le \pi$

9. (a) Find the Mean Deviation from Median:5

6	16	15	∞	5	No. of students:
40-5	30-40 40-50	20-30	10-20	0-10	Marks:

(b) Solve graphically: $\cos x = 2x$

SEMT	*	
IL INSTIT	1	
Freq. :	Class:	100 (a) Find the Quartile Deviation of the following distribution:
15	0-10	Find
20	10-20	Find the Qu distribution
25	20-30	Quarti on:
24	30-40	le De
12	40-50	viatio
31	50-60	n of ti
71	0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80	ne foll
52	70-80	owing 6

- (b) Maximise z = 2x + y. Subject to $x + y \le 1$, $2x+3y \ge 6$, $x \ge 0$, $y \ge 0$.
- 11. (a) Calculate the coefficient of correlation from Economics and Statistics: the % of marks obtained by 10 students in

Stats	Marks Eco:	Roll			
•••	s in	Roll No.:			
84	78	1			
51	78 36	2			
91	98	ယ			
60	25	4			
68	75	75	75	75	v
62	82	6			
86	90	7			
58	62	∞			
53	65	9			
47	39	10			

Э

- (b) Find the probability that a card drawn from a pack of 52 cards be either a king or a spade.
- 12. (a) The current 'i' in a circuit having a resistance R, an inductance L and e.m.f. E is given by $L\frac{di}{dt} + Ri = E$. If initially the current be zero, find 'i' at any time 't'.4
 - (b) Find the Adjoint and the Inverse of the matrix 5

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 \\ 5 & -2 & 6 \\ 0 & 0 & 4 \end{pmatrix}$$

