Total No. of printed pages = 9

END SEMESTER EXAMINATION - 2019

Semester: 3rd (Old)

Subject Code: Sc-303

MATHEMATICS - III

Full Marks - 70

Time-Three hours

The figures in the margin indicate full marks for the questions.

PART - A

Marks - 25

1. Fill in the blanks:

1×10=10

- (a) If the position vector of a point (-4, -3) be \vec{a} , $|\vec{a}| =$ _____.
- (b) The position vector of the mid-point of the vector joining the points P(2i-3j+4k) and Q(4i+j-2k) is _____.
- (c) If the height of 5 persons are 144 cm, 152 cm, 150 cm, 158 cm and 155 cm respectively then the mean height is _____.

[Turn over

	<u>e</u>
110,	The
120,	mode
140,	of the
130,	
120,	observations
140, 1	tions
120 is	120,
1	110.
	130,

(e) The mean deviation from the mean from the observations 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 is _____.

(f) The probability of drawing a queen from a pack of cards is ______.

(g) The distance between the points A(2, 1, 2) and B(-1, -3, 2) is ______.

(h) The position vector of the point A(2 = 1, 3)

(i) The degree of the differential equation TRA

$$\left(\frac{d^2y}{dx^2}\right)^2 + \frac{dy}{dx} + 5y = 0 \text{ is }$$

(j) The solution of the equation $\frac{d^2y}{dx^2} + 9y = 0$ is

2. Answer true or false:

1×10=10

(a) The roots of the equation $x^3 + x + 2 = 0$ are the co-ordinates of the point at which the curve meets the x-axis.

(b) The equation $2x^2 + 3x + 1 = 0$ has real roots.

(c) The equation $\tan x = 1$ has infinite number of roots.

(d) The maximum number of points at which the equation $x^3 + 3x^2 + 2x + 5 = 0$ is three.

(e) If a line passes through three given points, then the points are said to be collinear.

(f) The magnitude of a unit vector is never equal

The differential equation of the type $\frac{dy}{dx} + Py = Q$ is a linear differential equation.

to one.

(h) If the cross product of two vectors is zero, the vectors will be perpendicular to each other.

(i) In tossing a coin the probability of getting a head cannot be greater than one.

j) If the dot product of two vectors is zero, the vectors will be perpendicular to each other.

3

- 3. Choose the correct answer:
- (a) The degree of the differential equation $\frac{d^2y}{dx^2} + 9y = 0$ is
- (ii) 2

- (iv) 3
- (b) The magnitude of the vector 4i + 3j + 5k is
- (i) \(\sqrt{2}
- (ii) 5\sqrt{2}
- (iv) 2
- (c) The number of real roots of the equation $x^3 = -1$ is
- (i) 0

(ii) 1

(iii) 2

- (iv) 3
- (d) The primitive of x dx + y dy = 0 is
- (i) $x^2 = 2y$
- (ii) $y^2 = 2x$
- (iii) x + y = c
- (iv) $x^2 + y^2 = c$
- 212/Sc-303/Maths-III(O) 4

- (e) The equation $y^2dx + (xy + x^2)dy = 0$ is

- (ii) homogenous
- (iii) exact
- (iv) None of the above.

PART-B

Marks - 45

- Form a differential equation corresponding to $y = e^{mx}$ by eliminating m.
- Solve (any three):

3×3=9

(i)
$$y\sqrt{1+x^2}dy + x\sqrt{1+y^2}dx = 0$$

- (ii) $\frac{dy}{dx} = \frac{3xy + y^2}{3x^2}$
- (iii) $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
- (iv) $\frac{dy}{dx} + y \tan x = \cos x$
- (v) y = px + cos p
- 212/Sc-303/Maths-III(O)

[Turn over

3

(i)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2e^{3x}$$

(ii)
$$(D^2 - 4D + 3)y = x^3$$

(iii)
$$(D^2 + 2D + 1)y = \sin 2x$$

(i) Draw the graph of the equation
$$\sin x = \cos x$$
; * $\sin x = \cos x$

(ii) Solve graphically
$$x^3 - 3x + 2 = 0$$

(iii) If
$$y=a+\frac{b}{x'}$$
, find a and b given the

following data:

Y :	×
60.1	4
49.5	5
42.4	6
36.8	7
32.1	00

8. Answer any three questions:

Calculate the mean and median of the following data:

Interval	Frequency
0 - 5	3
5 - 10	7
10 - 15	9
15 - 20	14
20 - 25	20
25 - 30	28
30 - 35	22

(ii) Find the standard deviation from the follow-

30 - 40	20 - 30	10 - 20	Class Interval
21	24	4	Frequency