Total No. of printed pages = 8

END SEMESTER EXAMINATION - 2020

Semester : 2nd (New/Old) Subject Code : Se-204 APPLIED PHYSICS – II Full Marks – 70 Time – Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

1. All questions of PART-A are compulsory.

2. Answer any five questions from PART-B.

PART – A

Marks - 25

- 1. Fill in the blanks with appropriate words : $1 \times 10 = 10$
 - (a) In an electric cell _____ energy is converted to _____ energy.
 - (b) For a concave mirror, when the object is at focus the image is formed at _____.

[Turn over

- (c) Two parallel current flowing in the same direction _____ each other.
- (d) Repulsion is the surest test of electrification than _____.
- (e) There are _____ defects of simple voltaic cell.
- (f) The focal length of _____ mirror is positive.
- (g) Watt hour is unit of _____.
- (h) The angle of dip at the pole is _____.
- (i) The particle emitted by metal under the action of light is _____.
- (j) P-type germanium is obtained by doping pure germanium with elements like
- 2. Choose the correct answer in each of the following: $1 \times 10 = 10$
 - (a) The power of a convex lens of focal length 50 cm is

AL LIBRARY

- (i) 5 Dioptre
- (ii) 0.5 Dioptre
- (iii) 2 Dioptre
- (iv) 0.2 Dioptre

51/Sc-204/AppPhy-II(N/O)

(b)	Two parallel		arallel	conduction	wires carrying current		
	in	the	same	direction	mer y	TINRA	

- (i) attract one another
- (ii) repel one another
- (iii) exert no force
- (iv) may attract or repel

(c) Two 4µF capacitors in series is equal to

THE OF TEC

- (i) 8µF (ii) 4µF
- (iii) 2µF (iv) 0.2µF
- (d) X-ray consists of
 - (i) photon

(ii) electron

(iii) positively charged particle

(iv) neutral particles

(e) Which of the following should be used as a rear view mirror in automobiles?

(i) convex mirror (ii) plane mirror

(iii) concave mirror (iv) parabolic mirror

51/Sc-204/AppPhy-II(N/O) (3) [Turn over

(f) With the increase of temperature, the resistivity of semiconductor

- (i) decreases
- (ii) increases
- (iii) remains unaffected
- (iv) may be increased or decreased depending on the nature of the semiconductor
- (g) An N-type crystal is
 - (i) neutral
 - (ii) positively charged
 - (iii) negatively charged
 - (iv) None of the above
- (h) The nature of the nucleus is not affected by the emission of
 - (i) α -rays
 - (ii) β-rays
 - (iii) positron
 - (iv) y-rays

51/Sc-204/AppPhy-II(N/O)

(4)

- (i) The specific resistance of a wire
 - (i) varies with its temperature
 - (ii) varies with its length
 - (iii) varies with its cross-section
 - (iv) varies with its mass
- (j) An uniform magnetic field is represented by a set of force which are

-

- (i) parallel
- (ii) convergent
- (iii) divergent
- (iv) None of the above

3. Write true or false:

- (a) Unit of capacity of a conductor is farad.
- (b) The SI unit of resistance is ohm.
- (c) The direction of induced emf is obtained from Lenz's law.
- (d) The photo-electric effect proves that light is quantum.
- (e) Faraday's law helps us to know the motion of a magnet.

(5)

51/Sc-204/AppPhy-II(N/O)

[Turn over

ALLIBRAD

OF TECHNO

 $1 \times 5 = 5$

PART-B

Marks-45

- 4. (a) Establish the relation between focal length and radius of curvature of spherical mirror. 2
 - (b) An object is placed at a distance of 60 cm from a spherical mirror and produces a virtual image at a distance 20 cm behind the mirror. Find the focal length of the mirror. Is the mirror concave or convex? 2+1=3
 - (c) Write two properties of magnetic lines of force. 2
 - (d) Define neutral point. What is the unit of magnetic intensity? 2

1

5. (a) What is field intensity?

- (b) Three capacitors of capacitance 5μ F, 10μ F and 20μ F are connected in series across a 12 volt battery. Find the potential difference across each of capacitance. 3
- (c) Briefly describe the construction of Leclanche cell. 3
- (d) What are the two conditions for total internal reflection? 2

(6)

51/Sc-204/AppPhy-II(N/O)

TUTE OF T

6.	(a)	State Kirchoffs voltage law.	2
	(b)	What is resistivity? Explain briefly.	
	(c)	The specific resistance of a copper wire it $49 \times 10^{(-6)}$ ohm cm. The length is 110 m and diameter is 0.2 mm. Find its resistance	s n
	(d)	What is the dimension of resistivity? 1	
7.	(a)	What is seebeck effect? Give one example of thermocouple material. $2+1=3$	e
	(b)	Give two applications of Eddy Current. 2	
	(c)	What is photoelectric effect? Deduce Einstein's photoelectric effect. 1+2=3	•
	(d)	Mention one application of photocell. 1	
8.	(a)	What is Mass defect? Give the expression with its symbolic meaning. 2	1
	(b)	Calculate energy of a photon of radio waves of wavelength 30 metres.	
		Given (h = 6.62×10^{-27} ergsec).	-
	(c)	Give two properties of Beta and Gamma rays. 2+2=4	
51/5	Sc-20	4/AppPhy-II(N/O) (7) [Turn over	6

ACTRA JHAR

æ

- 9. (a) Differentiate between intrinsic and extrinsic semiconductor . 3
 - (b) What is thermionic emission?
 - (c) How N-type semiconductor is prepared? 3
 - (d) What are the types of lasers based on laser medium used? 2

Service and the service of the servi

the back of 18d VA

(8)

51/Sc-204/AppPhy-II(N/O)

4950(W)

1