Total No. of printed pages = 8 Sc-202/Maths-II/2nd Sem/Com/2017/N

MATHEMATICS-II

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART-A

1. Match the following :

(i)
$$Lt_{x\to 0} \frac{x^2 - 4}{x - 2}$$

(ii)
$$\operatorname{Lt}_{x \to 0} \frac{\sin 2x}{x}$$

COS X

2

0

4

2

(iii)
$$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}^2-3)\Big|_{\mathrm{x}=1}$$

(iv)
$$\operatorname{Lt}_{h\to 0} \frac{\sin(x+h) - \sin x}{h}$$

(v)
$$\frac{d}{dx}\cos^2 x\Big|_{x=0}$$

Turn over

5

2. Fill in the blanks :

- Locus of a point moving at equal distance from two given points P and Q is a and is the perpendicular bisector of PQ.
- (ii) The major axis of the ellipse $\frac{x^2}{2} + \frac{y^2}{9} = 1$ is

(iii) The point of discontinuity of the function

$$f(x) = \frac{x^2 - 4}{x + 2}$$
 is

(iv) The order derivative of $y = e^{4x}$ is $16e^{4x}$.

(v) Domain of
$$f(x) = \frac{x-1}{x(x+2)}$$
 is

(vi) If $f(x) = \cos 2x$, $0 < x < \pi$, then $f(\frac{\pi}{4}) =$

(vii) is the maximum value of $y = \sin x$ in $-\pi < x < \pi$.

(viii) The value of $\lim_{x\to\infty} \frac{\sin x}{x}$ is

46/Sc-202/Maths-II (2)

(ix) is the minimum value of $y = x^2$.

- (x) Derivative of a constant is
- (xi) If of $y = x^3$ is $3x^2$, then of $3x^2$ is x^3 .
- (xii) $\int_{-a}^{b} f(x) dx = 0$, if f(x) is function.
- (xiii) Area of the curve bounded by y = f(x), x-axis and x = a and x = b is

(xiv)
$$\int_{-3}^{3} x^{3} dx = \dots$$

 $(xv) \int 3x^2 \sin x^3 dx = \dots$

3. Choose the correct answer :

(a) Distance between (1, 2) and (4, 2) is

(i)	$\sqrt{3}$			(ii)	2.1

(iii)) 3		(iv)	4

(b) Gradient of the line passing through (6, 0) and (4, 2) is

(3)

- (i) .1 (ii) 1
- (iii) 2 (iv) 1

46/Sc-202/Maths-II

[Turn over

5

(c)	x-intercept of the straight line $5x + y = 10$ is			
	(i) 10	(ii) 5		
^{ra} xl	(iii) 2	(iv) 1		
(d)	Radius of the circle 0 is	$x^2 + y^2 - 2x - 4y - 4 =$		
	(i) 5	(ii) 1		
	(iii) 3	(iv) 2		
T	and a second	and the second second		

(e) Focus of the parabola y² = 4x is
(i) (1, 1) (ii) (0, 1)

(iii) (-1, 0) (iv) (1, 0)

PART-B

4. Find limit (any two):

 $3 \times 2 = 6$

(i)
$$Lt_{x\to\infty} \frac{3x^2 + 2x - 1}{5x^2 - 2}$$

(ii)
$$Lt_{x \to 1} \frac{x^2 - 1}{x - 1}$$

46/Sc-202/Maths-II

(4)

(iii)
$$\underset{x \to 1}{\text{Lt}} f(x)$$
 if $f(x) = 2x - 1$, $x < 1$
= x^2 , $1 < x$

(iv)
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{x}$$

5. Find
$$\frac{dy}{dx}$$
 (any three):

 $2 \times 3 = 6$

2

- (i) $y = \log (\cos^2 2x)$
- (ii) $y = at^2$, x = 2at
- (iii) $x^y = y^x$
- (iv) $x^3 + y^3 = 3xy$
- (v) $y = x^4$ at (-1, 1)

(vi) $y = \sin 6x$

- 6. Find second order derivative of $f(x) = 2x e^x + 1$.
- 7. Find equation to the tangent and normal to the curve $x^2 + x + y = 3$ at (1, 1). 3

Or

Divide 15 into two parts so that the square of one multiplied by cube of the other is maximum.

46/Sc-202/Maths-II

(5)

[Turn over

8. (a) Evaluate any three :

(i)
$$\int \frac{\sin(\log x)}{x} dx$$

3×3=9

3

(ii)
$$\int \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} + \mathrm{e}^{-\mathrm{x}}}$$

(iii)
$$\int \cos 4x \cos 2x \, dx$$

(iv)
$$\int \frac{\mathrm{dx}}{\mathrm{x}^2 + 4\mathrm{x} + 13}$$

(v)
$$\int \frac{xe^x}{(x+1)^2} dx$$

(b) Evaluate any one :

(i)
$$\int_{0}^{\frac{\pi}{2}} (a\cos^2 x + b\sin^2 x) dx$$

(6)

"I LIME " THE A DENN

(ii)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$$

46/Sc-202/Maths-II

9. Find the sum :

$$\operatorname{Lt}_{x \to \infty} \left\{ \frac{1^2}{n^3 + 1^3} + \frac{2^2}{n^3 + 2^3} + \frac{3^2}{n^3 + 3^3} + \dots + \frac{n^2}{n^3 + n^3} \right\}$$
3

Find by integration the area of the triangle bounded by the line 4y - 5x = 0, the x-axis and x = 4.

Or

10. Answer any two:

 $2 \times 2 = 4$

- (i) Find the ratio in which the point (- 11, 16) divides the line segment joining the points (- 1, 2) and (4, 5).
- (ii) Find polar coordinates of the point whose Cartesian coordinate is $(1, \sqrt{3})$.
- (iii) Find the distance between the parallel lines 2x + 3y = 8 and 2x + 3y + 16 = 0.
- (iv) Find centre and radius of the circle $x^2 + y^2 + 2x + 4y 20 = 0$.

11. Answer any three :

(i) Find equation to the line passing through (2, 1) and parallel to 2x - y + 3 = 0.

46/Sc-202/Maths-II

[Turn over

3×3=9

- (ii) A circle has its centre on the line 2x 3y = 4and passes through the points (4, 3) and (-2, 5). Find its equation.
- (iii) The equation of a straight line is 6x 8y + 5 = 0. Write its gradient form, intercept form and perpendicular form.
- (iv) Find the equation to the circle on the line (-1, -3) and (2, 4) as diameter.
 - (v) Trace the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1.$$

46/Sc-202/Maths-II

2100(P)