Sc-202/Maths-II/2nd Sem/2018/M

MATHEMATICS - II

(New Course)

Full Marks – 70

Time – Three hours

The figures in the margin indicate full marks for the questions.

PART - A

1. Fill in the blanks: 1×15=15.

- (i) A function f(x) is said to be —— if f(-x) = f(x) for all x.
 - (ii) $f(x) = 2x^2 3x 1$ then f(-2) = -.
 - (iii) f(x) = x+2, $g(x) = \frac{x^2-4}{x-2}$, f(x) and g(x) are same functions.
 - (iv) Domain of $f(x) = \frac{1}{x(x+2)}$ is ____.

[Turn over

(v)
$$\lim_{x\to 0} \frac{\sin 2x}{3x} = -$$

(vi) If a function f(x) is continuous at a point a then

$$f(a) = Lt_{x\to a} + f(x) = ---.$$

(New Course)

(vii) If
$$y = f(x)$$
 then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \underline{\qquad}$.

(viii) If
$$f(x) = \log (2x+3)$$
 then $f'(0) = ---$.

- (ix) A ball travels s ft. in t second where $s = 8t 10t^2$. The velocity of the ball when t = 2 is ——.

(xi)
$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
 for n _____.

- (xii) If derivative of a function $f(x)=x^{3/2}$ then f(x) = ---.
 - (xiii) In $\int \frac{dx}{x \log x}$ the substitution should be (x) to man (x)

(xiv)
$$\int_{a}^{b} f(x) dx =$$

- (xv)Representation of the area bounded by the straight line y = 2x above x-axis from x = 1to x = 4 in the form of definite integral is
- (d) $ax^2+2lixy+by^2+2gx+2fy+c=0$ may represent Find the correct answer:

 $1 \times 5 = 5$

- (a) The equation of the circle having centre at origin and radius 4 unit is
 - (i) $x^2 + y^2 = 12$
 - (ii) $x^2 + y^2 = 16$ swods out Hz (vi) (e) The direction cosines of x-axis are
 - (iii) $x^2 + y^2 = 4$
 - (iv) None of these
- (b) If in a coneic eccentricity (=e) = 1 then it is called a (a) If $\vec{a} = 3\vec{i} - \vec{j} - 4\vec{k}$ and $\vec{b} = -2\vec{i} + 4\vec{j} - 3\vec{k}$, find

 - (i) Circle (ii) Ellipse
 - (iii) Parabola (iv) Hyperbola

- (c) The eccentricity of the ellipse $9x^2 + 25y^2 =$ 225 is
- (i) $\frac{2}{5}$ and (ii) $\frac{3}{5}$ and (iii) $\frac{3}{5}$

- (iii) $\frac{4}{5}$ (iv) None of these
 - (d) $ax^2+2hxy+by^2+2gx+2fy+c=0$ may represent
 - a pair of straight line (i)
 - (ii) a circle
 - (iii) a parabola
 - (iv) all the above
 - (e) The direction cosines of x-axis are
 - (i) 1, 0, 0
- (ii) 0, 1, 1
- (iii) 0, 0, 1
- (iv) 0, 1, 1
- 3. Answer the following: $1 \times 5 = 5$

- (a) If $\vec{a} = 3\hat{i} \hat{j} 4\hat{k}$ and $\vec{b} = -2\hat{i} + 4\hat{j} 3\hat{k}$, find $\vec{a} + \vec{b}$
- (b) If $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} \hat{k}$, find $\vec{a} \times \vec{b}$.

1/Sc-202/Maths-II

- (c) If the dot product of two vectors are 'zero' then what is the angle between them?
- (d) If A = (3, 2, -5), B = (1, -1, 4), find AB.
- (e) Find the value of λ so that the two vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = -4\hat{i} - 6\hat{j} + \lambda\hat{i}$ are parallel.

Differentiate (any five): $5\times3=15$

(a)
$$y = \frac{(x+1)^3}{x}$$
 0 = 1 - x^8 - x^8 - x^8 - x^8

- (b) $y = \log(x^2 + 3)$
- (c) $y = \tan^{-1} \left(\frac{2x}{1+x^2} \right)$
- (d) $y = \frac{\sin x}{\sin x + \cos x}$
- (e) $y = (x)^{10} (10)^x$
- (f) $x = 3\cos\theta 2\cos^3\theta$, $y = 3\sin\theta 2\sin^3\theta$

(c) | xe^x dx

- (g) $x^3 + y^3 = 3axy$
 - (h) $y = \sin(x)^2$
- 5. Answer any one question: 1×5

(a) Find the maximum and minimum value of the function = d base 1 - 18 + 15 =

$$y = x^3 - 9x^2 + 15x + 10$$

(b) Find the equation of tangent to the curve

$$x^2 + y^2 - 6x - 8y - 1 = 0$$
 at $(2, -1)$

6. Evaluate any three:

 $3 \times 3 = 9$

- (a) $\int \frac{\sin(\log x)}{x} dx$
- (b) $\int \tan^2 x \, dx$
- (c) $\int xe^x dx$
- (d) $\int \frac{x^2 dx}{x^2 4}$

(e)
$$\int_{0}^{1} \tan^{-1} x \, dx$$
 is a factor of direction of $\int_{0}^{1} \tan^{-1} x \, dx$ is a factor of direction of $\int_{0}^{1} \tan^{-1} x \, dx$ is a factor of direction of $\int_{0}^{1} \tan^{-1} x \, dx$ is a factor of direction of $\int_{0}^{1} \tan^{-1} x \, dx$ is a factor of $\int_{0}^{1} \tan^{-1} x \, dx$.

(f)
$$\int_{0}^{\pi/4} \sin^{4} x \, dx$$

7. (a) Prove that 4+2=6

$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}} = \pi/4$$

(ii) If a line mail angles or Bry with the

Find the area of a circle $x^2 + y^2 = 9$ using definite integral.

(b) Use the concept of odd and even functions to evaluate

$$\int_{1}^{1} x(1-x^{2}) dx$$
and of 1 divide at an analysis and the first section of the first

8. Answer any two questions: 3+3=6

(a) Find the equation of the circle passing through (1,1), (2, -1), (3, 2).

- (b) Find the focus, length of latus rectum, equation of directrix of the parabola $y^2 = px$, which passes through (1, 2).
- (c) Find eccentricity and length of latus rectum of the ellipse $x^2 + 2y^2 = 3$.
- 9. Answer any one question:

2+2=4

- (a) (i) If the position vectors of A and B are $\hat{i}+3\hat{j}-7\hat{k}$ and $5\hat{i}-2\hat{j}+4\hat{k}$ respectively, find \overline{AB} and determine its direction cosines.
- (ii) If a line makes angles α , β , γ with the axes, prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.

Or

(b) (i) Find the resultant of the vectors

$$\overline{r}_1 = 2\hat{i} + 4\hat{j} - 5\hat{k}, \ \overline{r}_2 = \hat{i} + 2\hat{j} + 3\hat{k}$$

(ii) Find the ratio in which the line segment joining the points (1, 2, 3) and (4, 6, -5) is divided by XOY plane.

(a) Find the equation of the circle passing