Total No. of printed pages = 10

Se-102/Maths-I/1st Sem(New)/Com/2017/N

MATHEMATICS - I

(New Course)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART-A

Choose the correct enswer:

|x|0=10

- (a) Square root of 3 + 41 is
 - (i) $\pm (4 + i)$ (ii) $\pm (1 + i)$
 - (iii) $\pm (2 i)$ (iv) $\pm (2 + i)$
- (b) Modulus of $\frac{2-i}{3-4i}$ is

 - (i) $\frac{1}{5}$ (ii) $\frac{1}{\sqrt{5}}$
 - (iii) √3
- (iv) 5

Turn over

	(c)	Value of log_lo	g ₂ log ₃ 81 i	S			
		(i) 2	(ii)	3			
		(iii) 1	(iv)	None of the above			
	(d)	Value of ω105 is					
b		(i) -1	(ii)	1			
		(iii) œ	(iv)	-ω			
	(e)	arg (4 - i4) is	ES TON				
		(i) π	(ii)	π/2			
		(iii) π/4	(iv)	-π/4			
	(f)	Sum of first 24	terms in	-9 -1 + 7 + is			
		(i) 1992	(ii)	1662			
		(iii) 4620	(iv)	None of the above			
	(g)	6th term of 2, 8, 32, is					
		(i) 563	(ii)	2408			
		(iii) 4902	(iv)	2048			
	(h)	Number of way DEER be arran		letters of the word			
		(i) 10	(ii)	8			
		(iii) 12	(iv)	13			
45/8	c-10	2/Maths-I	(2)				

- (i) Expansion of $(1 + x)^{-1}$ is
 - (i) $1 x + x^2 x^3 + x^4 \dots$ to infinity
 - (ii) $1 + x + x^2 + x^3 + x^4 + \dots$ to infinity
 - (iii) $1 x + x^2 x^3 + x^4 \dots + x^n$
 - (iv) $1 + x + x^2 + x^3 + x^4 + \dots + x^n$
- (j) Cofactor of a₂₀ in 1 -2 1 is

(i)
$$\begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix}$$
 (ii) $-\begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix}$

(iii)
$$-\begin{vmatrix} 2 & -1 \\ 4 & 3 \end{vmatrix}$$
 (iv) $\begin{vmatrix} 2 & 0 \\ 4 & -1 \end{vmatrix}$

Choose the correct statement : 1×5=5

(a) (i)
$$\sin^2 x + \cos^2 x = 1$$

(ii)
$$\sec^2 x + \csc^2 x = 2$$

(iii)
$$\cos^2 x - \cot^2 x = -1$$

(b) (i)
$$-1 < \cos x < 1$$
 (ii) $\cos x \le 1$
(iii) $-1 \le \sin x \le 1$

45/Sc-102/Maths-I (3)

(c) (i)
$$1 + \sin A = \left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2$$

(ii)
$$\cos A = 2\sin^2 \frac{A}{2} + 1$$

(iii)
$$1 - \cos A = 2\sin^3 \frac{A}{2}$$

(d) (i)
$$\tan (a+b+c) =$$

tan a + tan b + tan c - tan a tan b tan c l - tan a tan b - tan b tan c - tan c tan a

(ii)
$$\tan (a + b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

(iii)
$$\tan (45^{\circ} + A) \tan (45^{\circ} - A) = -1$$

(c) (i)
$$\frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C}$$

(ii)
$$\cos \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

3.	Find	the o	orrect answe	er ;		1×5=5	
	(a)		cost of digg ate of Rs. 5		of size 4	×5×4 at	
		(i)	Rs. 4,000	(ii)	Rs. 2,00	0	
6		(iii)	Rs. 3,500	(iv)	Rs. 3,65	0	
	(b)	The length of the longest rod that can be kept in a box of size $3 \times 12 \times 4$ is					
	-	(i)	7.9	(ii)	8.2		
		(iii)	12.5	(iv)	13		
	(c)	The	volume of a	aphere o	of radius	6 is	
		(i)	287π	(ii)	346π		
		(iii)	410π	(iv)	288π		
	(d)		base radius o syramid is 2				
		(i)	175π	(ii)	174		
		(iii)	238π	(iv)	188π		
	(e)	to it	height of a c s volume to . The radius	the late			
			4.5	(ii)	3		
		(iii)		(iv)			
45	Sc-102	2/Matt	rs-I	(5)		[Turn over	

- 4. Choose the correct statement : 1×5=5
 - (a) (i) Distance between (4, 1) and (3, 0) is $\sqrt{2}$.
 - (ii) Gradient of the line joining (4, 1) and (3, 0) is 2.
 - (iii) Origin is a point on the line joining (4, 1) and (3, 0).
 - (b) (i) Two lines are parallel if coefficient of y in the two equations are same.
 - (ii) Two lines are mutually perpendicular if product of their gradient is 1.
 - (iii) If constant term of an equation of a straight line is 0, then the line passes through the origin.
 - (c) (i) The x intercept of 2x 3y + 1 = 0 is 2.
 - (ii) The y intercept of 3x y + 6 = 0 is 6.
 - (iii) 2x 3y + 1 = 0 and 5x 3y + 5 = 0 are parallel lines.
 - (d) (i) The gradient form of the equation 2x + y = 4 is y = -2x + 4.
 - (ii) The gradient form of the equation 5x + 2y = 1 is y = -5x + 1.

- (iii) The intercept form of the equation x + y = 6 is $\frac{x}{6} \frac{y}{6} = 1$.
- (e) (i) Equation of the line passing through
 (2, 1) and (4, 6) is 5x 2y = 8.
 - (ii) Equation of the line passing through (0, 0) and (1, 2) is 2x y = 7.
 - (iii) Equation of the line passing through (-3, 1) and (3, 3) is x + 2y + 6 = 0.

Part - B

5. Answer any five questions :

2×5=10

- (i) Evaluate log₂ log₃ log₂ 512.
- (ii) If x = 1 i, find the value of $x^2 2x + 2$.
- (iii) If P, = 336, find C,
- (iv) Determine the value of k if 7k + 3, 4k 5, 2k + 10 are in AP.
- (v) Find 8th term in $\left(1+\frac{1}{X}\right)^{12}$.
- (vi) Apply De Mov's theorem to find the value (1 + i)².

- (vii) In how many ways can the letters of the word MULTIPLE be arranged without changing the order of the vowels in the word?
- (viii) How many chords can be drawn through 11 points on a circle ?
- 6. Find the value of $(\sqrt{2}+1)^5 (\sqrt{2}-1)^5$. 3
- 7. Answer any two questions: 4×2=8
 - (i) If ω is an imaginary cube root of unity, prove that $\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$.
 - (ii) Insert 5 GMs between 576 and 9.

(iii) Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

- (iv) Resolve into simple fraction: $\frac{-x^2}{(x+1)^2(x+2)}$
- 8. Prove that (any four): 2×4=8
 - (i) $\sin^2 48^\circ + \sin^2 42^\circ = 1$
- # 45/Sc-102/Maths-I (8) 4500(W)

(ii)
$$\tan 53^\circ = \frac{\cos 8^\circ + \sin 8^\circ}{\cos 8^\circ - \sin 8^\circ}$$

(ill)
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sec\theta + \tan\theta$$

(iv)
$$\cos^4\theta - \sin^4\theta = \cos 2\theta$$

(v) $\cos 130^\circ + \cos 110^\circ + \cos 10^\circ = 0$

(vi)
$$\frac{\cos\theta + \cos\phi}{\sin\theta - \sin\phi} = \frac{\sin\theta + \sin\phi}{\cos\phi - \cos\theta}$$

(vii)
$$\frac{\sin(B-C)}{\cos B \cos C} = \tan B - \tan C$$

9. Answer any two questions:

3×2-6

- If $A + B + C = \pi$, prove that $\sin^2 A + \sin^2 B$ + sin²C = 2 + 2cos A cosB cosC
- (ii) Prove that $\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13} = \cos^{-1} \frac{12}{13}$
- (iii) For the triangle ABC, prove that $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$

10. A river is 32m wide. The depth d in meters at a distance x m from one bank is given by the following table:

х	:	0	4	8	12	16	20	24	28	32
d	:	0	10	20	25	30	41	44	26	10

Find the approximate cross-section of the river. 3

11. Answer any two questions:

2×2=4

- (i) Show that (-1, -1), (1, 1) and $(-\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle.
- (ii) Divide the line joining (-1, 1) and (6, 8) internally in the ratio 2:1.
- (iii) Find locus of a point moving at a constant distance 3 from (4, 1).
- (iv) Find the length of perpendicular from (0, 0) to x 5y 9 = 0.
- 12. Find the angle between the lines x + 2y 1 = 0 and 6x + 5y 3 = 0.

OT

Show that the points (2, 3) (3, 5) and (6, 11) are collinear.