END SEMESTER/RETEST EXAMINATION-2019

Semester: 1st (New)

Subject Code: Sc-102

MATHEMATICS-1

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instruction:

 Questions on both PART-A and PART-B are compulsory.

PART - A

Marks - 25

1. Choose the correct answer:

1×10=10

SATRAL INSTIT

(a) Square root of 2i is

(i) $\pm (4+i)$

(ii) $\pm (1+i)$

 $(iii) \pm (2-i)$

(iv) $\pm (2+i)$

[Turn over

- (b) Modules of $\frac{2-i}{3-4i}$
- - \equiv
- (iii) \sqrt{3}
- (i) 2
- (iv) 5
- (c) Value of log₂log₂log₃81 is (ii) 3
- (iv) 1
- (iv) None of these
- (d) Value of ω¹²⁰ is
- (i) -1
- Ξ
- $(v) \omega$

(iii) ω

- (e) arg(2-2i) is
- (ii) $\pi/2$

VIRAL

- (iii) $\pi/4$
- (iv) $-\pi/4$
- (f) Sum of the first 20 terms in -4-2+0+...
- (i) 1992
- (ii) 300
- (iii) 4620

- 110/Sc-102/Maths-I(N)
- (iv) None of these
- 3

- (g) 7th term of 2, 6, 18, is (i) 563
- (ii) 2408
- (h) Number of ways that the letters of the word (iii) 1458 (iv) 2048
- BOOK be arranged is
- (iii) 12 (i) 10
 - (ii) 8
- (iv) 13
- (i) Number of terms in the expansion of $(x + a)^n$
- - (ii) n+1
- (iii) n-1
- (iv) n²
- $(G_{22})^{G_{1}}$ $(G_{1})^{G_{1}}$ $(G_{1})^{$ IS.
- (ii) $-\begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix}$
- (iii) $-\begin{vmatrix} 2 & -1 \\ 4 & 3 \end{vmatrix}$ (iv) $\begin{vmatrix} 2 & 0 \\ 4 & -1 \end{vmatrix}$
- 2. Write true or false:
- 1×10=10
- (i) $\tan (A + B)$. $\tan (A B) = \frac{\sin^2 A \sin^2 B}{\cos^2 A \cos^2 B}$
- 110/Sc-102/Maths-I(N)

[Turn over

(3)

- (iii) $\frac{\sin \theta}{1 + \cos \theta} = \frac{1 \cos \theta}{\sin \theta}$
- (iv) $\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \left(\frac{A+B}{2}\right)$
- $(v) \cos 2\theta = 2\cos^2\theta 1$
- (vi) $\sin^2 18^\circ + \sin^2 72^\circ = 1$
- (vii) In any triangle ABC, we have C = b cos B + c Cos C

- (ix) The x-intercept of 5x+4y+20=0 is 5.

 (x) If m_1 and m_2 are slower lines in lines, then $m_1 = m_2$. OTTO ALENSTHONE OF O
- S. Find the correct answer:
- 1×5=5
- (a) The cost of digging a pit of size $4\times5\times4$ at the rate of Rs. 50 is
- (i) Rs. 4,000
- (ii) Rs. 2,000
- (iii) Rs. 3,500 (iv) Rs. 3,650
- 110/Sc-102/Maths-I(N) 4

- (b) The length of the longest rod that can be kept in a box of size 3×12×4 is
- (i) 7.9
- (ii) 8.2
- (iii) 12.5
- (iv) 13
- (ii) 346_π

(c) The volume of a sphere of radius 6 is

- (i) 287π
- (iii) 410_π
- (iv) 288π
- (d) The base radius of a cone is 7. If the height of the pyramid is 24 cm, its lateral surface
- (i) 175π
- (ii) 174_π
- (iii) 238_π
- (iv) 188_π
- (e) The height of a cylinder is 6 cm and the ratio 2:1. The radius is to its volume to the lateral surface area is
- (i) 4.5
- (ii) 3
- (iv) 2.5

(iii) 4

- 110/Sc-102/Maths-I(N)
- 3

Marks - 45

4. (a) Evaluate $\log_3 \log_2 \log_{\sqrt{3}} 81$.

(b) If
$$x = 1 + 2i$$
, find the value of $x^2 - 2x + 5$.

(c) Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & a^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a) 3$$

- (a) Determine the value of k if 7k + 3, 4k /5 2k + 10 are in AP.
- (b) Find 9th term in $\left(1+\frac{1}{x}\right)^{19}$

(c) If find
$$2n_{C_3} := n_{C_2} = 12 : 1$$
, find n. 2

- 6. (a) In how many ways can the letters of the word changing the order of the vowels in the MATHEMATICS be arranged without
- (b) Insert 5GMs between 576 and 9.

(c) Resolve into simple fraction:
$$\frac{x^2}{(x+1)^2(x+2)}$$

7. Prove that (any four):

(i)
$$\sin^2 48^\circ + \sin^2 42^\circ = 1$$

(ii)
$$\tan 53^\circ = \frac{\cos 8^\circ + \sin 8^\circ}{\cos 8^\circ - \sin 8^\circ}$$

(iii)
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sec\theta + \tan\theta$$

(iv)
$$\cos^4\theta - \sin^4\theta = \cos 2\theta$$

$$(v)$$
 cos130° + cos110° + cos10° = 0

$$\frac{\cos\theta - \cos\phi}{\sin\theta - \sin\phi} = \frac{\sin\theta - \sin\phi}{\cos\phi - \cos\theta}$$

(vii)
$$\frac{\sin(B-C)}{\cos B \cos C} = \tan B - \tan C.$$

8. Answer any two questions: 3×2=6

(i) If
$$A + B + C =$$
, prove that $\sin^2 A + \sin^2 B + \sin^2 C = 2+2\cos A \cos C$

(iv) Prove that
$$\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13} = \cos^{-1} \frac{12}{13}$$

(iii) For the triangle ABC, prove that
$$\frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{c}{2}.$$

- 9. (a) Find the equation of straight line which passes through the point (2, 3) and which is parallel to the straight line 3x + 4y + 8 = 0.
 - (b) Find the angle between the lines 7x y = 1 and 6x y = 11.
 - (c) Find the co-ordinate of the foot of the perpendicular from the points (-1, 3) to the line 3x 4y 16 = 0.
- 10. (a) An irregular plot has the following offsets measured from one end at equal distance:

3

x	0	12	24	36	48	60	72	84	96	108	120
d	53	52	47	49	53	63	58	61	52	49	48

Find the area of the plot.

(b) The section of a right circular cone by a plane through its vertex perpendicular to the base is an equilateral triangle, each side of which is 12m. Find the volume of the cone. 2