Total No. of printed pages = 10

Sc-102/Maths-I (N)/1st Sem/2018/M

MATHEMATICS - I

The state of the s

(New Course)

Full Marks – 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART - A

Choose the correct answer: 1×5=5
 (a) The value of i²¹ is

 (i) -1
 (ii) 1
 (iii) i
 (iv) -i

 (b) If ⁿC₂₀ = ⁿC₄, then the value of n is

 (i) 4
 (ii) 16
 (iii) 20
 (iv) 24

- (c) The number of terms in $\left(x^2 + \frac{1}{x}\right)^{12}$ is
 - (i) 12

(ii) 13

(iii) 11

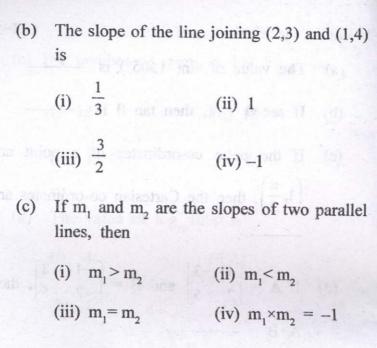
- (iv) 10
- (d) The value of $\log_{10} 1000$ is
- (i) 4 (ii) 1

(iii) 3

- (iv) 5
- (e) If $A = \begin{bmatrix} 3 & 0 & 5 \\ 2 & 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 9 & 25 & 1 \\ 4 & 49 & 9 \end{bmatrix}$ and

$$C = \begin{bmatrix} 6/2 & 0 & 10/2 \\ 1 \times 2 & 4 & 1 \end{bmatrix}$$
 then,

- (i) A = B (ii) A = C
- (iii) B = C
- (iv) $A \neq B \neq C$


2. Fill in the blanks: 1×5=5

- The value of $\sin(-1305^{\circ})$ is ———.
- (b) If $\sec \theta = 1$, then $\tan \theta$ is ———.
- (c) If the polar co-ordinates of a point are $\left(1,\frac{\pi}{2}\right)$, then the Cartesian co-ordinates are
- (d) If $A = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 3 \\ -2 & -5 \end{bmatrix}$, then
- (e) Partial function of $\frac{3x-1}{x^2-1}$ is ———.
- 3. Choose the correct answers:

 $1 \times 10 = 10$

- The co-ordinates of the middle-point of the (a) line joining (-2,8) and (0,5) is
 - (i) (-2,3)

- (ii) (6, 5)
- (iii) $\left(-1, \frac{13}{2}\right)$
- (iv) (10, 5)

(d) If the inclination of a straight line with the x axis is 135°, then the slope of the line is

(e) The straight line 4x - 3y + 7 = 0 passes through

- (f) $\sin^{-1}\left(\sin\frac{\pi}{2}\right)$ is equal to
 - (i) 0
 - (ii) 1
 - (iii) $\frac{\pi}{2}$
 - (iv) None of the above
- (g) If $\sin \theta = \frac{3}{5}$, then $\tan \theta$ is
 - (i) $\frac{5}{3}$ (ii) $\frac{3}{4}$
- (iii) $\frac{4}{5}$ (iv) $\frac{4}{3}$

 - (h) 10th term of 1, -2, 4, -8, is
- (i) -512

(ii) 19

(iii) 512

(iv) -17

- (i) The determinant of order three contains
 - (i) 2 rows 3 columns
 - (ii) 3 rows 2 columns
 - (iii) 3 rows 3 columns
 - (iv) 2 rows 2 columns
- (j) The modulus of 8 6i is
 - (i) √28

(ii) 10

- (iii) $\sqrt{-2}$
- (iv) -10
- 4. Match the following:

 $1 \times 5 = 5$

- (a) Area of the prism
- (i) $\frac{1}{3}\pi r^2 h$
- (b) Area of the pyramid (ii) Area of the base
 - × height
- (c) Volume of a prism (iii) Perimeter of the
 - base × height
- (d) Volume of a pyramid (iv) 1/2 × perimeter of the base × slant height
- (e) Volume of a cone (v) $1/3 \times$ area of the
 - base × height

5. Answer any five questions: $2 \times 5 = 10$

(i) Prove that
$$\frac{1+i}{1-i} + \frac{1-i}{1+i} = 0$$

- (ii) Insert one arithmetic mean between 3 and 20.
- (iii) Find the value of $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27}$
- (iv) How many numbers can be formed by using 4 out of the digits 1, 3, 5, 6, 7, 8, 9 ?
- (v) Find the base if the logarithm of 324 is 4.

(vi) Find the value of
$$\begin{vmatrix} 2 & 4 & 0 \\ 1 & 2 & 1 \\ 4 & 8 & -1 \end{vmatrix}$$

(vii) Prove that
$$\left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots \dots\right)$$

 $\left(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\dots \dots\right)=1$

6. Answer any three questions:

3×3=9

- (i) Find the co-efficient of x^4 in $\left(x \frac{1}{x}\right)^{11}$
 - (ii) Simplify:

$$\log \frac{a^3 b^3}{c^3} + \log \frac{b^3 c^3}{d^3} + \log \frac{c^3 d^3}{a^3} - 3 \log b^2 c$$

(iii) Solve by Cramer's rule:

$$4x - y + 2z = 10$$

$$5x + y - z = 1$$

$$3x + 3y - 2z = -7$$

- (iv) If a, b, c be in A.P. and x, y, z in G.P., prove that x^{b-c} y^{c-a} $z^{a-b}=1$
- (v) If ${}^{n}P_{6} = 30$. ${}^{n}P_{4}$, find n
- 7. Answer any three questions:

3×3=9

- (i) Show that the points (2,5), (4,6) and (8,8) lie on a straight line.
- (ii) Find the equation of the straight line which passes through (-1, 4) and perpendicular to 3x + 4y + 28 = 0

(iii) Find the length of perpendicular from the origin on the line 2x - 3y + 1 = 0

M

- (iv) Show that the angle between the lines $\sqrt{3}$ y = x + 2 and $\sqrt{3}$ x + 4 is 30°
- (v) Reduce 2x + 3y 5 = 0 to the intercept form and find x-intercept and y-intercept.
- 8. Prove (any four):

 $3 \times 4 = 12$

- (i) $\sin 600^{\circ} \cos 330^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$
- (ii) $\frac{\sin A}{1+\cos A} + \frac{1+\cos A}{\sin A} = 2\csc A$
- (iii) $\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)} = \tan A$
- (iv) $\frac{\sin 2A}{1+\cos 2A} = \tan A$
- $(v) \frac{\sin 3A}{\sin A} \frac{\cos 3A}{\cos A} = 2$

(vi)
$$\frac{\sin 60^{\circ} + \sin 30^{\circ}}{\cos 30^{\circ} - \cos 60^{\circ}}$$

(vii)
$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$$

9. (i) The cross sectional area of a tunnel is as follows:

Distance from

one end: 0 3 6 9 12 15 18

Area 27.9 30.6 33.8 32.4 30.7 27.9 26.1

Find the volume of the tunnel.

(ii) The curved surface area of a cone is 4070 cm² and its diameter is 70cm. What is its slant height?

$$(Use \pi = 22/7)$$