Total number of printed pages-4

53 (PH 101) ENPH

2018

ENGINEERING PHYSICS

Paper : PH⁻ 101 (Back) Full Marks : 100 Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Write the physical interpretation of the gradient of a scalar function. Distinguish between scalar and vector functions.
 - (b) Find the gradient of the following functions :

(i)
$$f(x,y,z) = x^2 y^3 z^4$$
. 2

(ii)
$$f(x,y,z) = e^x \sin(y) \ln(z)$$
. 3

- (c) State and explain Stokes' theorem.
- (d) Prove that the divergence of a curl is always zero.

Contd.

5

2.	(a)	Derive Bernoulli Equation. 10	
	(b)	Write the definition of three elastic constants. 6	
	(c)	What do you mean by Terminal velocity and Reynold number ? 4	
3.	(a)	Write down Maxwell's equations both in differential and integral forms. 8	
	(b)	Write short notes on : 12	
		(i) Displacement current	
		(ii) Hysteresis and	
		(iii) Faraday's law of electromagnetic induction.	
4.	(a)	Explain Dia-, Para- and Ferromagnetism with suitable examples. 8	
2	<i>(b)</i>	An RLC series circuit has $R = 160 \Omega$,	
		$X_L = 87 \Omega$, $X_C = 177 \Omega$, $f = 60 Hz$ and	
		$\varepsilon_m = 36V$. Find — 6	

- (a) the impedance z for the circuit
- (b) the current amplitude i_m and
- (c) the phase constant ϕ .

2

53 (PH 101) ENPH/G

(c)	Write the	e mathematical	vector	form	of			
	the following :							
		and the second se			-			

(i)	Biot-Savart law.	2

- (ii) Gauss's theorem.
- (iii) Ampere's law
- 5. (a) What is aberration in lenses ? Write down the spherical and chromatic aberration. 8
 - (b) What is population inversion and pumping mechanism in LASER ? Write a short note. 7
 - (c) What is the difference between spontaneous and stimulated emission?
- 6. (a) What is Carnot engine ? Explain with details about Carnot Cycle. 8
 - (b) A system is undergoing through adiabatic and isothermal changes. Explain this process with diagram. 7
 - (c) An ideal gas heat engine operates in Carnot Cycle between 227°C and 127°C. It absorbs 6×10² cal of heat at higher temperature. Calculate the amount of heat supplied to the engine from the source in each cycle. 5

3

53 (PH 101) ENPH/G

Contd.

2

2

- 7. (a) Write the differential equation of SHM and write expressions for the velocity and acceleration of a particle in SHM. At what points are the quantities zero and maximum ? 5+2
 - (b) A particle executes simple harmonic motion with amplitude A. At what distance from the mean position, its kinetic energy is equal to its potential energy. 5
 - (c) Discuss the superposition of two linear simple harmonic motions with same frequency ω and phase ϕ and hence illustrate special cases. 8
- 8. (a) What do you mean by damping ? How is it related to Q-factor ? 7
 - (b) Derive the differential equation for progressive wave. 6
 - (c) Write the difference between damped vibration and forced vibration. 7

53 (PH 101) ENPH/G

supplied to the ensine

4

200