Total no of printed pages:4

PG/2nd/PGET2103

2021

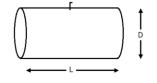
BIOENERGY AND CONVERSION SYSTEMS

Full Marks: 60

Time: Two hours

The figures in the margin indicate full marks for the questions

Section A: Multiple Choice Questions:


[1 x 15 =15]

- 1. Which one of the following products is not obtained by the thermo-chemical conversion process?
 - a) Syngas
 - b) Producer gas
 - c) Ethanol
 - d) Biochar
- 2. The main composition of biogas gas is
 - a) O_2 and N_2
 - b) CO_2 and H_2
 - c) CO and H_2
 - d) CH_4 and CO_2
- 3. During anaerobic digestion process, accumulation of volatile fatty acid (VFA) takes place
 - a) Hydrolysis
 - b) Acidogenesis
 - c) Acetogenesis
 - d) Methanogenesis
- 4. Which one of the following compounds is not use in the alkaline pre-treatment method for lignocellulosic biomass feedstock?
 - a) KOH
 - b) H₂O₂
 - c) H₃PO₄
 - d) NaOH
- 5. In biomass gasification process, in which zone the endothermic reaction takes place
 - a) Drying zone
 - b) Pyrolysis zone
 - c) Reduction zone
 - d) Oxidation zone
- 6. Which one of the following is not a feedstock for 1st generation biofuel production?
 - a) Sugar cane
 - b) Sweet sorghum
 - c) Wheat
 - d) Grass
- 7. Bio-diesel is produced commercially by which of the following conversion process?a) Gasification

- b) Combustion
- c) Transesterification
- d) Pyrolysis
- 8. The total plant volume (V_p) of a Fixed dome plant: Hemisphere Design Biogas Plant is

a)
$$V_p = \frac{D^3}{2.236}$$

b) $V_p = \frac{2}{3}\pi \left(\frac{D}{2}\right)^3$
c) $V_p = \pi \left(\frac{D}{2}\right)^3$ D=diameter
d) None of these

9. The total plant volume of balloon-digester biogas plant (D=10 unit, L=20 unit) is

D=diameter, L =length

- a) 1571
- b) 447
- c) 262
- d) 1450
- 10. From which one of the following biomasses, the ethanol production can be considered thirdgeneration biofuel (ethanol)?
 - a) Woods
 - b) Sunflower
 - c) Microalgae
 - d) Sugar beet
- 11. The desired range of pH value for maximum biogas generation during anaerobic digestion process is
 - a) 5.5 6.0
 - b) 5.0 6.5
 - c) 6.8 7.3
 - d) 7.5 8.0

12. Match the Groups I and II and choose the correct combination option from the following:

Group -I	Group -II
X. Slow pyrolysis	i. High yield of liquid fuel
Y. Fast pyrolysis	ii. Carbon-rich solid residue
Z. Flash pyrolysis	iii. Gases and bio-oil

- a) X-iii, Y-i, Z-ii
- b) X-i, Y-ii, Z-iii
- c) X-iii, Y-ii, Z-i
- d) X-ii, Y-i, Z-iii

13. Match the Groups I and II and choose the correct combination option from the following:

3

Group -II

- i. The presence of microorganisms is needed
- ii. Partial oxygen is reqd.
- Z. In Fermentation iii. No oxygen is reqd.

Group -I

X. In Gasification

Y. In Pyrolysis

- X-ii, Y-i, Z-iii
- b) X-i, Y-ii, Z-iii
- c) X-iii, Y-ii, Z-i
- d) X-ii, Y-iii, Z-i

14. The gas generated through the biomass gasification is called-

a) Biogas

a)

- b) Producer gas
- c) Carbon dioxide gas
- d) Methane

15. Gasification of biomass is which type of conversion process?

- a) Chemical
- b) Biochemical
- c) Biological
- d) Thermo-chemical

Section B: Answer the following Questions

- 16. Explain briefly with block diagrams the Ethanol production processes from edible and non-edible cellulosic biomass.
- 17. Explain the Biomass Integrated Gasification Combined Cycle briefly.
- 18. Discuss the dual circulating fluidized bed gasifier briefly.

Section C: Solve the following Problems

- 19. a) A pyrolysis experiment showed that the bio-oil yield was 85% by weight. If the density of the bio-oil was found to be 1.5 kg/L, calculate the bio-oil yield in litres /ton. [3]
 b) A biomass gasifier is used to run a compression ignition (CI) engine. The engine operates in the dual-fuel mode with 85% diesel replacement. The gasifier engine system produces 350 kW of power. Calculate the biomass feeding rate to the gasifier if the calorific value of biomass is 16500 kJ/kg. Given that, the efficiencies of the gasifier and engines are 77% and 37%, respectively. [7]
- 20. Calculate the volume of cow dung based biogas plant required for cooking needs of a family of 7 people and lighting need with three 100 CP (candle power) lamps for 3 hours daily. Also, calculate the required number of cows to feed the plant. [10]

Consider the following data:

Biogas required for cooking = $0.200 \text{ m}^3/\text{person/day}$ Gas required for lighting a 100 CP mantle lamp = $0.130 \text{ m}^3/\text{hr}$ One cow can produce = 10 kg/day/head of cow dung but assume; collectable cow dung is only 80% Percentage of dry matter = 17%Gas yield = $0.34 \text{ m}^3/\text{kg}$ of dry matter Feedstock water ratio =1:1 and density of slurry = 1050 kg/m^3 Assume, digester volume will be occupied by 80% slurry for HRT of 45 days.

21. a) What are the ranges of temperature at different zone of pyrolysis? Write four reactions that take place during pyrolysis.

 $[10 \times 3 = 30]$

b) Consider a floating drum biogas plant has to be installed in a village. If the diameter and height of the digester are 3 m and 1.5 m, respectively. Calculate the-[5]

- i) digester volume (V_d)
 ii) gas storage volume (V_g)
 iii) total plant volume (V_p) of the digester.