Total number of printed pages: 02

PG/2nd /PGET202

2023

NUMERICAL METHODS FOR ENERGY SYSTEMS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

(Answer any five questions.)

				(.	Answer (iny fiv	e qu	estion	ls.)					
1	a)		s graphic											4
	b)		Regula F I places.	alsi metl	nod find	a real r	oot d	of x ³ –	- 4x	- 9 :	= 0 corr	ect to t	hree	6
	c)	Using E decima	Bisection	Method	find a r	<mark>ea</mark> l roo	ot of	f e ^x -	- <i>x</i> =	:2 c	orrect ı	up to tl	hree	5
	d)		uccessive to for dee			1ethod	finc	l a rea	l roc	ot of	3x ³ — 9	$x^2 + 8$	= 0	5
2.	a)	Solve the non-linear differential equations $2x^2 + 3xy + y^3 = 3, -4x^2 + 2xy + y^2 = 30.$									10			
			to three 5 and y _o		l places	using	New	/ton-R	aphs	on n	net hod,	given	that	
	b)	Consider the second order value problem $y'' = x^3y + x^2y'$ with initial condition, $y(0) = 1, y'(0) = \frac{1}{2}$.									10			
		Using th places.	ne fourth	order Ru	nge-Kutt	a meth	od fi	nd f(0	.2) c	orrec	t to fou	rth deci	imal	
3.	a)	State ar	nd Prove	Newton	's Forwa	rd Inte	erpol	ation	forn	nula.				10
	b)	Compu	te (1.2) f	rom the	followin	g data								10
			X	1.0	1.5	2.0		2.5		3.0				
			f(x)	9.0	32.75	79.	0	155.	25	269	0.0			
4.	a)	Given,												10
		X	1	2	3	4	5	. ×	6		7	8		
		F(x)	1	8	27	64	1	25	210	6	343	512		

Estimate f(7.5).

- b) The observed values of a function are respectively 168, 120, 72 and 63 at the positions 3, 7, 9 and 10 of the independent variable respectively. What is the best estimate you can give for the value of the function at the position 6 of the independent variable?
- a) (a) The following data gives the velocity of a particle for twenty seconds at an interval of five seconds. Find the initial acceleration using the entire data

Time <i>t</i> (sec):	0	5	10	15	20
Velocity v(m/sec)	0	3	14	69	228

b) The elevation above a datum line of seven points of a road are given below:

x:	0	300	600	900	1200	1500	1800
Y:	135	149 _{Kol}	157 crajhar	183 _{Boo}	201	205	193

Find the gradient of the road at the middle point.

5.

c) From the table below, for what value of x, y is minimum? Also find this value of y

 x:
 3
 4
 5
 6
 7
 8

 Y:
 0.205
 0.240
 0.259
 0.262
 0.250
 0.224

- 6. a) Evaluate the integral $\int_0^2 e^{x^2} dx$ using Trapezoidal Rule taking the number 10 intervals.
 - b) Compute the value of $\int_{0.2}^{1.4} (sinx logx + e^x) dx$ using Simpson's 3/8 rule.
 - c) A solid of revolution is formed by rotating about the x-axis, the area between the x –axis, the lines x = 0 and x = 1 and the curve through the points with the following co-ordinates

x:	0.00	0.25	0.50	0.75	1.00
y:	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the solid formed using Simpson's rule.

d) Using the Runge-Kutta method of the fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 and 0.4.

7

7

10

6

4

5

5

6
