PG/2nd/PGET202

2021

NUMERICAL METHODS FOR ENERGY SYSTEM

Full Marks: 60

Time: 2 hours

The figures in the margin indicate full marks for the questions.

- A. Multiple Choice Questions
 - 1. If the equation f(x) = 0 is such that $g(x) = \emptyset(x)$ and $\emptyset'(x_0) = 3$, with the Newton-Raphson method is not convergent for the problem, then which of the following method is usable?
 - a. Iteration Method
 - b. Newton-Raphson Method
 - c. Regula-False Method
 - d. None of these
 - 2. Gauss-Seidel iterative method can be used for solving a set of
 - a. Linear differential equations only
 - b. Linear algebraic equations only
 - c. Both linear and nonlinear algebraic equations
 - d. Both linear and nonlinear algebraic differential equations
 - 3. If f(x) = 0 such that $g(x) = \emptyset(x)$, then iteration Method is convergent if
 - a. |f'(x)| < 1
 - b. $|\emptyset'(x)| < 1$
 - c. |f''(x)| < 1
 - d. $|\emptyset''(x)| < 1$
 - 4. Rate of convergence value of Newton-Raphson method is
 - a. 2.6
 - b. 1.2

1 x 10=10

- c. 2
- d. 1
- 5. For the unequal interval, method use to interpolate is
 - a. Newton Forward Interpolation
 - b. Newton Forward Interpolation
 - c. Lagrange interpolation
 - d. Gauss Interpolation
- 6. Which of the following is not a closed formula for integration?
 - a. Trapezoidal Rule
 - b. Simpson's Rule
 - c. Cubic Spline
 - d. None of the above
- 7. "Quadrature" refers to
 - a. A method to obtain roots of a nonlinear equation
 - b. Quadratic approximation of a function
 - c. Inner (dot) product with quadratic weighting functions
 - d. Representing integral as a weighted sum of function values at certain points
- 8. Which of the following is true about a general ODE Boundary Value Problem (BVP)?
 - a. Finite difference approximation leads to linear algebraic equations
 - b. One can always find an analytical solution to any ODE-BVP Computational Techniques
 - c. Neumann and mixed boundary conditions are handled using "ghost point" approach
 - d. It can be solved using "method of lines"
- 9. The first and second derivatives of the function at the point x=1.2 from the following data

X:	1	2	3	4	5
Y:	0	1	5	6	8

- a. 14 and 17
- b. 15 and 17

- c. 17 and 14
- d. 17 and 15
- 10. Value of $\Delta tan^{-1}x$ is

a.
$$tan^{-1} \left\{ \frac{x}{1 + hx + x^2} \right\}$$

b. $tan^{-1} \left\{ \frac{h}{1 + hx + x^2} \right\}$
c. $tan^{-1} \left\{ \frac{x}{1 + x^2} \right\}$
d. $tan^{-1} \left\{ \frac{h}{1 + x^2} \right\}$

- B. Answer any two(02) from the following questions:
 - 1. Explain how you will use Trapezoidal method to numerically evaluate the integral $\int_0^{\alpha} f(x) dx$?
 - 2. Calculate the value of the integral $\int_{4}^{5.2} \log_{2} x dx$ by Simpson's 3/8 th rule taking h = 0.2 retaining the numerical values to 7 decimals. Compare the results with exact values.
 - 3. Find the cubic polynomial which takes the following values:

X	0	1	2	3
f(x)	1	2	1	10

- C Answer any six(06) from the following questions
 - 1. Solve the non-linear equations, $2x^2 + 3xy + y^2 = 3,4x^2 + 2xy + y^2 = 30$. Correct to three decimal places, using Newton-Raphson method, given that $x_0 = -3$ and $y_0 = 30$

In the Table below, the values of y are consecutive terms of a series of which 23.6 is the 6^{th} term. Find the first and tenth terms of the series:

X	3	4	5	6	7	8	9
У	4.8	8.4	14.5	23.6	36.2	52.8	73.9

Consider the second order value problem y" - 2y' + 2y = e^{2t}sin(t) with y(0) = -0.4 and y'(0) = -0.6. Using the fourth order Runge-Kutta method, find y(0.2)

4*2=8

7*6=42

3. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \ge 0$,

given that u(x,0) = 20, u(0,t) = 0, u(5,t) = 100. Compute u for the timestep with h=1 by Crank Nicolson method.

4. Show that the following four-point backward difference formula can be used to compute the second derivative:

$$f_2(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2}$$

- 5. Use Romberg's method to compute I = $\int_0^1 \frac{1}{1+x} dx$ correct to three decimal places with Trapezoidal rule.
- 6. Evaluate the integral $\int_0^{\pi/2} sinxdx$ using two-terms Gaussian formula

х	f(x)	$\Delta f(x)$	$\triangle f(\mathbf{x})$	$\Delta^3 f(x)$	₫f(x)
0	4				
2	26	11	7		
3	58	32	11	1	0
4	112	54	16	1	0
7	466	118	22	1	
9	992	228			
2	772				

7. Find f'(5) from the following table: