Total number of printed pages = 3

19/2nd Sem/PGET 2108

AL LIBA

2022

SOLAR PV ENERGY

Full Marks - 100

Time – Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	(a)	Write the properties of semiconductor.	5
	(b)	What is energy level?	5
	(c)	The band gap for GaAs is 1.43 eV. Calcut the optimum wavelength (in μ m) of light photovoltaic generation in a GaAs cell.	late for 5
140	(d)	Write the equation of Fermi level for n-t and p-type material.	ype
2.	(a)	Draw and discuss the solar cell characterist	ics.
			5
		[Turn o	ver

(b) Calculate the maximum power and electrical efficiency of solar cell at an intensity of 200 W/m^2 .

RAL LIBE

 $V_{max} = 0.14 V$; $I_{max} = 6 \text{ mA}$; $A_c = 4 \text{ cm}^2$.

- (c) Derive the equation of maximum power of solar cell. 10
- 3. (a) Derive the equation of Fermi level for intrinsic semiconductor. 5
 - (b) What is 'four quadrant operation' of an inverter? 5
 - (c) A solar cell of area 4 cm² receives solar radiation with photons of 1.8 eV energy having an intensity of 200 W/m². Measurements show open circuit voltage of 0.24 V, short circuit current of 10.24 mA. Current at maximum power is 6.5 mA. The efficiency of the cell is 1.1%. Calculate the voltage at maximum power. Also calculate the fill factor. 10
- 4. (a) An Si sample is doped with 1×10^{17} atoms/cm³ phosphorous atom. If the intrinsic carrier concentration for Si is 1×10^{10} atoms/cm³, calculate the minority hole concentration (in atoms/cm³) at room temperature. 5

138/19/2nd Sem/PGET 2108 (2)

- (b) What is modulation ratio?
- (c) Draw and discuss the IGBT characteristics. 10
- 5. (a) Discuss PWM scheme of single-phase full bridge inverter. 10
 - (b) In the full-bridge inverter circuit $V_d = 300 V$, m_a = 0.8, m_f = 39 and fundamental frequency is 47 Hz. Calculate the rms value of the fundamental frequency voltage and some of the dominant harmonics in the output voltage $V_o = \text{if a PWM}$ bipolar voltage switching scheme is used. 10
- 6. (a) What is step-up (Boost) converter? 5
 - (b) Two solar modules are connected in parallel having voltage rating of 12 V each and with a current capability of 3.5 A each respectively. What will be the output in terms of voltage and current?
 - (c) Discuss PWM in three-phase voltage source inverter. 10

RALLIA

(3)

138/19/2nd Sem/PGET 2108

50

5