Total number of printed pages:2

PG/1st/PGET103

2021

FUNDAMENTALS OF ENERGY TECHNOLOGY

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

1.	(a)	write about the energy scenario in muta.	2
	(b)	Derive the total power contained in the wind flowing through the swept area A.	5
	(c)	Calculate the total wind power in an area where the average wind speed is 6 m/s, using a WPP with a 60 metre rotor diameter. Assume air temperature is 25 degree centigrade with a density of 1.225 kg/m ³ .	10
2	(a)	Write down the factors affecting the performance of rotor of wind power plant.	5
	(b)	What is aerodynamic efficiency?	5
	(c)	A wind power plant of 80 m rotor diameter is rotating at a particular windy site with the average wind speed of 6 m/s at a power co-efficient of 0.4. Assuming the air temperature as 25 degree with a density of 1.225 kg/m ³ . Calculate the (i) power density of air (ii) maximum possible power density (iii) actual power density (iv) power output from the WPP.	1

1

3	(a)	What is tip speed ratio.	5
	(b)	Draw the curves showing the relation of TSR and power coefficient for different types of WPP.	5
	(c)	A WPP has rotor diameter of 80 meter. The RPM is 15 and the wind speed is 8 m/s. The power coefficient is 0.4. Assuming the air density as 1.225 kg/m ³ , find the torque coefficient C_T . Also find the torque available at the rotor shaft.	10
4	(a)	What is thrust force?	5
	(b)	Derive the equation $C_p/C_T = \lambda$.	5
	(c)	Draw an approximate equivalent circuit of a wound rotor induction machine. Derive the relation between stator d-q axis current and rotor d-q axis current. Also draw the phasor diagram.	10
5	(a)	Is it possible to harness all the kinetic energy present in the wind?	5
	(b)	Write about the solar thermal system.	5
	(c)	Draw the rotor current vector in rotor and stator coordinates. Derive the value of $cosp_{1}, cosp_{2}, sinp_{1}, sinp_{2}$,	10
6	(a)	What is biomass?	5
	(b)	How is biomass formed?	5
	(c)	Derive the work done and efficiency of a Pelton wheel.	10