2021

MACHINE LEARNING

Full Marks: 60

Time: Two hours

The figures in the margin indicate full marks for the questions.

A. Multiple Choice Questions

1 x 20=20

- 1. Which of these is a reasonable definition of machine learning?
 - a. Machine learning is the science of programming computers.
 - b. Machine learning learns from labeled data
 - c. Machine learning is the field of allowing robots to act intelligently.
 - d. Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.
- 2. Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true? Check all that apply.
 - a. A*B*A = B*A*B
 - b. If A is not a 3x3 identity matrix, then A*B = B*A
 - c. A*B = B*A
 - d. A+B=B+A
- 3. Which among the following algorithms are used in Machine learning?
 - a. Naive Bayes
 - b. Linear Regression
 - c. Support Vector Machines
 - d. All of the Above
- 4. What is supervised learning?

- a. All data is unlabelled and the algorithms learn to inherent structure from the input data
- b. All data is labelled and the algorithms learn to predict the output from the input data
- c. It is a framework for learning where an agent interacts with an environment and receives a reward for each interaction
- d. Some data is labelled but most of it is unlabelled and a mixture of supervised and unsupervised techniques can be used.
- 5. P1: Suppose you are working on weather prediction, and use a learning algorithm to predict tomorrow's temperature (in degrees Centigrade/Fahrenheit).

P2: Suppose you are working on weather prediction, and your weather station makes one of three predictions for each day's weather: Sunny, Cloudy or Rainy. You'd like to use a learning algorithm to predict tomorrow's weather.

- a. P1 is a classification and P2 is a regression problem
- b. P1 is a regression and P2 is a classification problem
- c. Both P1 and P2 are classification problems
- d. Both P1 and P2 are regression problems
- 6. What is unsupervised learning?
 - a. a) All data is unlabelled and the algorithms learn to inherent structure from the input data
 - b. All data is labelled and the algorithms learn to predict the output from the input data
 - c. It is a framework for learning where an agent interacts with an environment and receives a reward for each interaction
 - d. Some data is labelled but most of it is unlabelled and a mixture of supervised and unsupervised techniques can be used.
- 7. What is Semi-Supervised learning?
 - a. All data is unlabelled and the algorithms learn to inherent structure from the input data
 - b. All data is labelled and the algorithms learn to predict the output from the input data
 - c. It is a framework for learning where an agent interacts with an environment and receives a reward for each interaction
 - d. Some data is labelled but most of it is unlabelled and a mixture of supervised and unsupervised techniques can be used
- 8. What is Reinforcement learning?

- a. All data is unlabelled and the algorithms learn to inherent structure from the input data
- b. All data is labelled and the algorithms learn to predict the output from the input data
- c. It is a framework for learning where an agent interacts with an environment and receives a reward for each interaction
- d. Some data is labelled but most of it is unlabelled and a mixture of supervised and unsupervised techniques can be used.
- 9. Choose the options that are correct regarding machine learning (ML). I) when the output variable is a category, such as "red" or "blue" or "disease" and "no disease".
 - II) When the output variable is a real value, such as "dollars" or "weight".
 - a. I) is classification & II) is regression
 - b. II) is classification & I) is regression
 - c. Both I) & II) are classification
 - d. Both I) & II) are regression
- 10. Which of the following sentence is FALSE regarding regression?
 - a. It relates inputs to outputs.
 - b. It is used for prediction.
 - c. It may be used for interpretation.
 - d. It discovers causal relationships
- 11. In Regression modeling we develop a mathematical equation that describes how, (Predictor-Independent variable, Response-Dependent variable)
 - a. one predictor and one or more response variables are related.
 - b. several predictors and several response variables response are related.
 - c. one response and one or more predictors are related.
 - d. All of these are correct.

(X-intercept, Slope)

12.	In the mathematical Equation of Linear Regression $Y = a + bX$, (a, b) refers
	to

b.	(Slope, X-Intercept)		
c.	(Y-Intercept, Slope)		
d.	(slope, Y-Intercept)		
Which of the following is not numerical functions in the various function representation of machine learning?			
a.	a) Case-based		
b.	Neural Network		
c.	Linear Regression		
d.	Support Vector Machines		
RN	Ns stands for?		
a.	Receives neural networks		

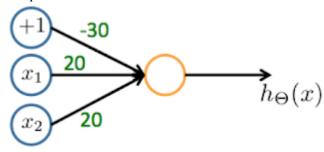
b. Report neural networks

13.

14.

- c. Recording neural networks
- d. Recurrent neural networks
- 15. Which of the following is/are Common uses of RNNs?
 - a. BusinessesHelp securities traders to generate analytic reports
 - b. Detect fraudulent credit-card transaction
 - c. Provide a caption for images
 - d. All of the above
- 16. Which of the following is well suited for perceptual tasks?
 - a. Feed-forward neural networks
 - b. Recurrent neural networks
 - c. Convolutional neural networks
 - d. Reinforcement Learning
- 17. Which of the following activation function output is zero centered?
 - a. Hyperbolic Tangent.
 - b. Sigmoid.
 - c. Softmax

- d. Rectified Linear unit(ReLU).
- 18. Which of the following is FALSE about Deep Learning and Machine Learning algorithms?
 - a. Deep Learning algorithms work efficiently on a high amount of data.
 - **b.** Feature Extraction needs to be done manually in both ML and DL algorithms.
 - c. Deep Learning algorithms are best suited for unstructured data.
 - d. Deep Learning algorithms require high computational power.
- 19. Which of the following is FALSE for neural networks?
 - a. Artificial neurons are similar in operation to biological neurons.
 - b. Training time for a neural network depends on network size.
 - c. Neural networks can be simulated on conventional computers.
 - d. The basic unit of neural networks are neurons.
- What is an activation value?
 - a. weighted sum of inputs
 - b. threshold value
 - c. main input to neuron
 - d. none of the mentioned


B. Group B 2*6=12

- Suppose you train a logistic classifier h_θ(x) = g(θ₀ + θ₁x₁ + θ₂x₂).
 Suppose θ₀ = 6, θ₁ = -1, θ₂ = 0Draw a figures to represent the decision boundary found by your classifier?
- 2. Imagine you are working on a project which is a binary classification problem. You trained a model on training dataset and get the below confusion matrix on validation dataset.

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Based on the above confusion matrix, calculate the accuracy.

3. Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\theta}(x)$. Which logical function does it (approximately) compute?

- 4. P1: Suppose you are working on stock market prediction, and you would like to predict the price of a particular stock tomorrow (measured in dollars). You want to use a learning algorithm for this.
 - P2: Suppose you are working on stock market prediction. You would like to predict whether or not a certain company will declare bankruptcy within the next 7 days (by training on data of similar companies that had previously been at risk of bankruptcy).
 - P3: Suppose you are working on stock market prediction, typically tens of millions of shares of Microsoft stock are traded (i.e., bought/sold) each day. You would like to predict the number of Microsoft shares that will be traded tomorrow.

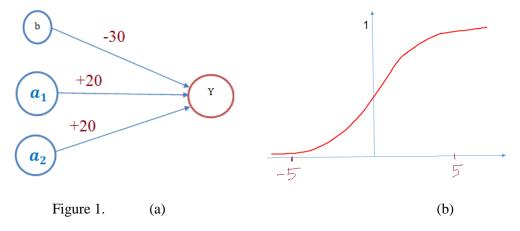
P1 is a	problem, P2 is a	problem and P3 is a
	problem	

- 5. Explain the different layers in CNN.
- 6. What Are Vanishing and Exploding Gradients?

C Group C 4*7=28

1. Explain with figure the hypothesis function: $h_{\theta}(x) = \theta_0 + \theta_1 x$ for

(i)
$$\theta_0 = 0, \theta_1 = 0.5$$


(ii)
$$\theta_0 = 1, \theta_1 = 0.5$$
 and

(iii)
$$\theta_0 = 2, \theta_1 = 0$$

- 2. Explain cost function. Accompany your explanation with a diagram
- 3. Explain the principle of the gradient descent algorithm. Accompany your explanation with a diagram
- 4. Differentiate between LMS training rule (normal) and gradient descent for n features.
- 5. Consider the following training data set with 7 tuple and 2 attributes:

Observation	X1	X2	Class
1	3	4	♦
2.	2	2	•
3	4	4	♦
4	1	4	♦
5	2	1	0
6	4	3	0
7	4	1	0

- (a) Plot all the seven training points. Are the classes { \(\phi \), \(\quad \) } linearly separable?
- (b) Sketch the optimal separating hyperplane and provide the equation for this hyperplane
- (c) Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta 0+\beta 1X1+\beta 2X2>0$, and classify to Blue otherwise." Provide the values for $\beta 0$, $\beta 1$ and $\beta 2$.
- (d) Indicate the support vectors for the maximal margin classifier.
- 6. You are given the neural networks as shown fig 1(a) which take two binary valued inputs $x1, x2 \in \{0, 1\}$ and the activation function is shown in figure 1(b). Which of the logical functions does it compute? Assume b=+1

7. Design a neural network to realize XNOR function
