Total number of printed pages: 3

PG/2nd/PCSE214

5

2024

SUBJECT NAME Machine Learning

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	What is Machine Learning? How it is related with Artificial Intelligence. What is the goal of Machine Learning?	5
	b)	Explain the concept of model selection in machine learning. Discuss different strategies like cross-validation.	5
	c)	Provide an example of a real-world scenario where you would choose unsupervised learning over supervised learning. Justify your choice. What type of Machine Learning algorithm would you use to allow a robot to walk in various unknown terrains?	5
	d)	Describe various metrics (Accuracy, precision, recall, F1-score, R-squared) for evaluating the performance of machine learning models for classification and regression tasks.	5
2.	a)	Briefly discuss techniques for regularization to address overfitting in machine learning models.	5
	b)	Imagine you are working on a project which is a binary classification	5

problem. You trained a model on training dataset and get the below confusion matrix on validation dataset.

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Based on the above confusion matrix, calculate the accuracy

c) Explain the importance of considering bias-variance trade-off when selecting and evaluating machine learning models.

d) P1: Suppose you are working on stock market prediction, and you would like to predict the price of a particular stock tomorrow (measured in dollars). You want to use a learning algorithm for this.

P2: Suppose you are working on stock market prediction. You would like to predict whether or not a certain company will declare bankruptcy within the next 7 days (by training on data of similar companies that had previously been at risk of bankruptcy).

P3: Suppose you are working on stock market prediction, typically tens of millions of shares of Microsoft stock are traded (i.e., bought/sold) each day. You would like to predict the number of Microsoft shares that will be traded tomorrow.

P1 is a _____ problem, P2 is a _____ problem and P3 is a _____ problem

3.	a)	Explain the concept of Linear Regression and its assumptions.	5
	b)	Derive the cost function used for training a Linear Regression model.	5
	c)	Describe the process of Gradient Descent for optimizing the cost function in Linear Regression.	5
	d)	Discuss the limitations of Linear Regression and how Logistic Regression addresses them.	5
4.	a)	Explain the Logistic Regression model for binary classification	5
	b)	Derive the sigmoid function used in Logistic Regression and explain its role.	5
	c)	Describe the Maximum Likelihood Estimation (MLE) approach for training a Logistic Regression model.	5
	d)	Discuss how to evaluate the performance of a Logistic Regression model for classification tasks.	5
5.	a)	Explain the concept of Linear Regression and its assumptions.	5
	b)	Derive the cost function used for training a Linear Regression model.	5
	c)	Describe the process of Gradient Descent for optimizing the cost function in Linear Regression.	5
	d)	Discuss the limitations of Linear Regression and how Logistic Regression addresses them.	5

- 6. a) Explain the concept of Principal Component Analysis (PCA) and its purpose in dimensionality reduction.
 - b) Derive the formula for computing the principal components (eigenvectors) 5 of a data matrix.

5

- c) Explain how to choose the number of principal components to retain for 5 optimal information preservation.
- d) Discuss the applications of PCA in various machine learning tasks, such as 5 image processing or anomaly detection.

