Total number of printed pages: 2

PG/I/PCSE101

2023 Mathematical Foundation in Computer Science

Full Marks : 100 Time : Three hours

Answer question number 1 and any four from the rest

1. Answer all the questions still the Office of the office

- i) $S=\{\{\{\}\},\,\{\}\},\,the number of elements in P(S) is$
- ii) A, B and C are three sets, where |A| = |B| = |C| = 5 and $|A \cap B| = |A \cap C| = |B \cap C| = |A \cap B \cap C| = 2$. Then $|A \cap B \cap C| = ?$
- iii) Draw the venn diagram of $A^c B^c$
- iv) In a group of 15 students; 10 like mathematics and 10 like machine learning and 3 like none of these. How many of them like both?
- ${\bf v}$) Explain that the $\mathit{friendship}$ relation is not transitive.
- vi) The inverse element of i in the multiplicative group, $\{1, -1, i, -i\}$ is
- vii) Write a recurrence relation for the sequence $1, a, a^2, a^3, a^4, ...$
- viii) What is the criteria that a poset become lattice?
- ix) Find the solution of the recurrence relation $t_n = a t_{n-1} (t_0 = 1)$

2. a) Prove that $p \leftrightarrow q$ and $(p \land q) \lor (\sim q \rightarrow \sim p)$ are logically equivalent. b) Given that P(x): "x+2 > x", then find the truth value of $\forall P(x)$. State the difference between $\exists x \forall y P(x, y)$ and $\forall y \exists x P(x, y)$ with an example.

c) Express the statement "Every student in this class has studied MFCS" into logical expression. Write the negation of the above statement.

6 + 6 + 4 + 4

3. a) Prove that for all sets A and B, if $B \subseteq A^c$ then $A \cap B = \phi$.

b) Prove that ${}^{n+1}C_r = {}^n C_r + {}^n C_{r-1}$

c) Find the minimum number of students in a class such that three of them are born in the same month?

8 + 6 + 6

4. a) Define the partial order set. When a partial order set become a lattices? b) Draw the Hasse diagram representing the partial ordering $\{(a, b) \mid a \text{ divides }$ b} on $\{1, 2, 3, 4, 6, 8, 12\}$. Is this Hasse diagrams a lattice?

10 + 10

Central Institute Of Technology

5. a) Define spanning tree. Find the minimum spanning tree of the given graph using Kruskal's Algorithm.

b) Describe the breadth-first search algorithm. Do the depth-first search on the above graph

10 + 10

- 6. Write a short note on the following (any four)
- (i) Modus ponens असतो मा
- (ii) Crisp set and Fuzzy set
- मा (iii) Hamiltonian path and Euler graph
- (iv) Tower of Hanoi problem
- (v) Recursive function for (x + y)

 $5 \ge 4$