Total number of printed pages:

Programme(PG)/1st Semester/PCSE101

2023

Mathematical Foundation in Computer Science

Full Marks: 100

Time: Three hours

HRAIHAR The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Let p and q be the propositions defined as	8
		p: "The result is decided" and q: "The copies have been evaluated".	
		Express each of these compound propositions as an English sentence	
		(i) $\neg q \rightarrow \neg p$ (ii) $p \leftrightarrow q$	
	b)	Prove that $p \leftrightarrow q$ and $(p \land q) \lor (\neg q \rightarrow \neg p)$ are logically equivalent.	6
	c)	Given that $P(x)$: "x+2 > x", then find the truth value of $\forall P(x)$.	6
		Explain the difference between $\exists x \forall y P(x, y)$ and $\forall y \exists x P(x, y)$ with an example.	
2.	a)	Describe the derangement problem.	12
		Establish a Recurrence Relation for the Derangement problem.	
	b)	Solve the recurrence relation $T(n) = T(n-1) + 2n$ and $T(0) = 0$	8
3.	a)	State and prove the multinomial theorem	12
	b)	Find the term that is independent of x in the expression	8
		$\left(x^2+x+rac{1}{x} ight)^{10}$	
4.	a)	Define the partial order set. When a partial order set become a lattices?	6
	b)	Consider the set $S = \{a, b, c\}$ and $P(S)$ is the power set of S, then show that	6
		$(P(S), \subseteq)$ is a partial order set.	
	c)	Draw the Hasse diagram of the above partial order set. Is it a lattices?	8