Total number of printed pages:4

2

PG/1st/PCSE102

5

9

6

(8)

2021

ALGORITHMS AND ALGORITHMIC COMPLEXITY

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

- a) With proper example discuss the difference between upper bound and strictly bound.
 - b) Consider $f(n) = n^{5} + n^{4} \log n 12n^{2} + 15$. Compute the upper bound, lower bound and strictly bound for f(n).
 - c) Compute the relations between the following two functions in terms of upper bound, lower bound and strictly bound

 $f(n) = n^{53}+n^{41}-11$ and $g(n) = n^{52}logn+1124n^{41}+15$

- a) Judge the statement "when an array is sorted and the pivot is the first element quick sort should be avoided". Justify your answer using time complexity.
 - b) Consider a case when two arrays are sorted. You are (5) asked to merge them into a single sorted array.
 Compute the time complexity for your problem.

1

	c)	If a recursive relation $T(n)=2T(n/2)+n^2$, then what will be the time complexity?	(7)
3	a)	Use dynamic programming to solve factorial computation of a number. Compute the time complexity.	(5)
	b)	Consider the size and profit of the following cut rod problem and compute the maximized profit using dynamic programming. Size: 1, Profit: 10 Size: 2, Profit: 18 Size 3, Profit: 21	(9)
	c)	Size 4, Profit : 36 Do you think instead of dynamic programming greedy method may be applied for solving the above problem? Justify your answer.	(6)
4	a)	Construct the following graph Vertices V ={A, B, C, D, E, F}	(8)
		Edges $E = \{AB, AC, BC, BD, CE, CF, DF\}$	
		2	

Weights W of the Edges = {AB = 2, AC = 1, BC =3, BD =7, CE =4, CF =1, DF =5}

Construct the MST using greedy method.

b) Solve the following TSP problem

	A	В	С	D	E
A		10	5	2	1
В	10	-	3	4	2
С	5	3	-	1	7
D	2	4	1	-	5
E	1	2	7	3	-

5 a) The arrival and finish time of different processes are given below

-	P1	P2	P3	P4	P5	P6	P7	P8	P9
Arri val Tim e	2	4	6	7	3	8	8	1	10
Finis h time	5	6	12	8	9	15	10	2	12

If only one processor is there, then write an algorithm such that the maximum number of processes can be

3

(7+7)

(12)

executed. Use your algorithm for solving the above mentioned problem.

b)	With an example discuss why 0/1 knapsack problem					
	can not be solved using greedy algorithm?					

6 a) **Define** the terms P, NP, NP hard and NP Complete. (4)

4

b) What is reduction? Discuss with example.

- c) **Prove** that 1 SAT and 2 SAT both are not NP (3+9) **Complete**.
- Write short notes on
- a) Satisfiabilty Test
- b) BFS and DFS

7

- c) Cooks' Theorem
- d) Branch and bound technique

(5x4)

(4)