2023

Optimization Techniques in Water Resources Engg

Full Marks: 100

Time: 3 hours

The figures in the margin indicate full marks for the questions.

1. Inflows during four seasons to a reservoir with storage capacity of 4 units are, respectively,2,1,3 and 2 units. Overflows from the reservoir are also included in the release. Reservoir storage at the beginning of the year is 0 units. Release from the reservoir during a season result in the following benefits which are same for all the four seasons. Obtain the release policy of the reservoir using dynamic programming.

ntral Institute Of Technology

Release	Benefits		
0	-100		
1	250		
2	320		
3	480		
4	520		
5	520		
6	410		
7	120		

S₁ = 0 |
$$t = 1$$
 | $t = 2$ | $t = 3$ | $t = 4$ | $t = 4$ | $t = 4$ | $t = 3$ | $t = 4$ | $t = 4$ | $t = 3$ | $t = 4$ | $t = 4$ | $t = 3$ | $t = 4$ | $t = 4$ | $t = 3$ | $t = 4$ | $t =$

2. A total of 6 units of water is to be allocated optimally to three users. The allocation is made in discrete steps of one unit ranging from 0 to 6. With the three users denoted as User 1, User 2 and User 3 respectively, the returns obtained from the users for a given allocation are given in the following table. find allocations to the three users such that the total return is maximized.

20

Amount of Water		Return from	TD.:	2006		
Allocated	User 1	User 2	User 3	नत गमय		
X	$R_1(x)$	$R_2(x)$	$R_3(x)$	201		
0	0	0141	0	यातिगमय		
I	5	5	7			- Progress of computations
2	8	6	12	p		- riogress or computations
3	9	3	15	Q User	User	User
4	8	-4	16	1	2	3
5	5	-15	15	†	†	†
6	0	-30	12	x ₁	x ₂	x ₃

3. Minimize
$$f(x) = 5x_1^2 + x_2^2 + 4$$
 20
Subject To, $x_2 - 4 \ge -4x_1$; $-x_2 + 3 \le 2x_1$

4. Minimize
$$f(x) = 5x_1^2 + 2x_2 - x_1x_2$$
 20
Subject To, $x_1+x_2=3$

5. Maximize
$$Z=2x_1+x_2$$
 20 Subject To, $3x_1+x_2 \le 300$; $4x_1+2x_2 \le 500$, $x_1,x_2 \le 0$