Total number of printed pages:2 Programme PG/Semester 1st /Paper Code PCEW102

2022

Open Channel Flow

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

		Full Marks : 100	0
		Time : Three hours	
		The figures in the margin indicate full marks for the questions.	
		Answer any five questions.	
1.	a)	Explain the phenomenon of the depth of flow for the channel transitions a) with hump and b) with increase in channel width.	10
	b)	A rectangular channel has a width of 2.0 m and carriers a discharge of 4.80 m3/s with a depth of 1.60 m. at a certain section a small, smooth hump with a flat top and of height 0.10 m is proposed to be built. Calculate the likely change in the water surface. Estimate the minimum size of the hump to cause critical flow over the hump.	10
2	a)	For hydraulic jump in rectangular channel derive the equation for sequent depth ratio and energy loss.	10
	b)	Derive the differential equation of gradually varied flow.	10
3	a)	A horizontal trapezoidal channel of 2.0-m bed width and side slopes 2 horizontal: 1 vertical carries a discharge of 6.225 m3/s at a depth of 0.20 m. If a hydraulic jump takes place in this channel, calculate the sequent depth and energy loss.	10
	b)	Find the slope of the free water surface in a rectangular channel of width 20m, having depth of flow 5m. The discharge through the channel is 50 m3/s. The bed of the channel is having a slope of 1 in 4000. Take the value of Chezy's constant C=60.	10
4		Write Short Notes On:	5 x 4 =20
	5	a) Hydraulic Jump	
X		b) Flow Profiles of GVF	
		c) Surges	
		d) Slopes of GVF	
		e) Types of open channel	
5		Sketch the possible GVF profiles in the following serial arrangement of channels and control. The flow is from left to right:	4 x 5 =20

		a) mild – sluice gate – steep – horizontal – sudden drop	
		a) mild – stuce gate – steep – norizontai – sudden drop	
1		(b) steep – steeper–mild – milder slope	
		(c) steep – mild – sluice gate – mild – sudden drop	
		(d) sluice gate – adverse – horizontal – steep slope	
6	a)	A rectangular channel carries a flow with a velocity of 0.65 m/s and depth of 1.40 m. If the discharge is abruptly increased twice by a sudden lifting of a	10
		gate on the upstream, estimate the velocity and the height of the resulting	SY'
		surge.	
	b)	In a tidal river the depth and velocity of flow are 0.9 m and 1.25 m/s	10
		respectively. Due to tidal action a tidal bore of height 1.2 m is observed to travel upstream. Estimate the height and speed of the bore and the speed of	
		flow after the passage of the bore.	
		Monte	