Total number of printed pages-5

53 (ME 301) BATH

2018

BASIC THERMODYNAMICS

Paper : ME 301

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of six.

1.	(a)	What is zeroth law of thermodynamics?
		is a state of the second seco
	(b)	Compare heat transfer with work transfer. 2
	(c)	State Kelvin Planck's statement. 2
	(d)	What is the entropy principle? 2
	(e)	What is flow and non-flow process?
	(f)	Define thermodynamic equilibrium.

Contd.

- What is the triple point of water? Give (g)the values of properties at that point. 3 (h)What do you mean by latent heat of vaporization? $\mathbf{2}$ What is a pure substance? Give (i) example. A tube contains an oil of specific gravity (a)0.9 to a depth of 120cm. Find the gauge pressure at this depth (in kN/m^2). 5
- (b) An artificial satellite revolves round the earth with a relative velocity of 800m/s. If acceleration due to gravity is $9m/s^2$ and gravitational force is 3600N, calculate its kinetic energy.
 - 5

6

- (c) Show that $C_P C_V = R$.
- (d) Define 'internal energy' and prove that it is a property of a system. 4
- 3. (a) The properties of a closed system change following the relation between pressure and volume as PV = 3, where (P) is in bar, V is in m^3 . Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar. 6

53 (ME 301) BATH/G

2.

A mass of gas is compressed in a quasi-(b) static process from 80kPa. 0.1m³ to 0.04 MPa, $0.03 m^3$. Assuming that the pressure and volume are related by $PV^{1:35}$ = constant, find the work done by the gas system. 6

(c) The pressure and volume relation during a non-flow reversible process is given by

$$P = \left(V^2 + \frac{8}{V}\right)bar$$

The volume changes from $V_1 = 6m^3$ and

 $V_2 = 2m^3$. Calculate the work done. The heat rejected during the process is 200kJ. Determine the change in internal energy. 8

4. (a)

In a system 80kJ of heat is supplied from state 1 to state 2 by constant volume process. The internal energy at state 1 is 90kJ. The system rejects 95kJ of heat from state 2 to state 3 by constant pressure process and 30kJ of work is done on it. The system is brought back from state 3 to state 1 by a reversible adiabatic process. Calculate the adiabatic work and the values of internal energy at state 2 and state 3. 7

53 (ME 301) BATH/G 3

Contd.

- A steam turbine developing 34kWreceives steam at 15bar with an internal energy of 2720 kJ/kg and specific volume of $0.17m^3/kg$ and velocity of 110m/s. Steam is exhausted from turbine at 0.1bar with internal energy 2177kJ/kg and specific volume $15m^3/kg$ and velocity 320 m/s. The heat loss over the surface of the turbine is 20kJ/kg. Neglecting change in potential energy, determine work done per kg of steam. 7
- (c) Explain the general steady flow energy equation. 3

(d) Explain the various forms of energy.

 5. (a) A Carnot engine works between temperature limits of 825°C and 125°C. The engine receives 3600kJ of heat per minute. Determine the efficiency of the engine and the amount of heat rejected to the sink per second.

(b) Show that

(b)

 $COP_{Heat Pump} = COP_{Refrigeration} + 1$

(c) Describe the working of a Carnot cycle with a neat diagram. 8

5

53 (ME 301) BATH/G

- 6. (a) A vessel of volume $0.04m^3$ contains a mixture of saturated water and saturated steam at a temperature of $250^{\circ}C$. The mass of the liquid present is 9kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy and internal energy. 12
 - (b) A Carnot cycle operates between source and sink temperatures of 250°C and -15°C. If the system receives 90kJ from the source, find :
 - (i) Efficiency of the system
 - (ii) The net work transfer
 - (iii) Heat rejected to sink.

8

