2025

DATA MINING and DATA WAREHOUSING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	Ans	wer the following questions							
1.	a)	Match the "Pre-Processing approach" with the "To handle the challenges":							
	<i>,</i>	Kokraihar:: Bodoland							
		Pre-Processing approach To handle the challenges							
		Data Cleaning,	Noisy, Missing values, Different attributes,						
		Data Transformation,	Same value expressed differently, Huge						
		Data Reduction	amount of data, Range of attributes						
	b)								
		(i) A data warehouse is based on a multidimensional data model.							
		(ii) Different naming conventions in different sources lead to inconsistency.							
		(iii) Clustering is used for data smoothing.							
		(iv) K-means can handle the	~ // / / / / /						
		(v) Nominal variable can take more than two states.							
		(vi) Ordinal variables can be continuous.							
		(vii) AGNES is a Top down approach.							
		(viii) Agglomerative approach iteratively merged together the clusters.							
		(ix) PAM is efficient for large datasets.							
		(x) OPTICS is a model based clustering.							
		(xi) Density based clustering discover the arbitrary shape of cluster.							
		(xii) Predicting the Covid-19 behavior is a data mining task.							
		(xiii) Replacing the data by smaller representation in data reduction.							
		(xiv) Removing the irrelevant attributes in data transformation.							
2.	a)	What are the data transformation methods?							
	b)	Explain the KDD process with a diagram in details.							
	c)	Apply the Z-score normalization on the following values 5, 10, 20, 30, 40							
		and 50 of attribute.							
	d)	Discuss the OLAP operations in details.							
3.	a)	What are the non-parametric methods in the numerosity reduction?							
	b)	Find out the two clusters using the k-medoids algorithm for the given data objects {(2,4) (2,5) (3,6) (3,8) (4,5) (4,6)}. (Hint: k=2)							
	U)								
	c)	What do you mean by the good clustering?							

	d)	Apply the	e Bavesian	classificat	ion for pr	edicting the	buys comp of the given				
	u)	* * *	•			N, EXCELI	• = 1				
		Age	Income	Student	Credit_rating	Class:Buys_com	— ′				
		<=30	HIGH	N	FAIR	N	'P				
		<=30	HIGH	N	EXCELLENT	N					
		3140	HIGH	N	FAIR	Y					
		>40	MEDIUM	N	FAIR	Y					
		>40	LOW	Y	FAIR	Y		1.0			
		>40	LOW	Y	EXCELLENT	N		10			
		3140 <=30	MEDIUM	N	FAIR	Y N					
		<=30 <=30	LOW	Y	FAIR	Y	_				
		>40	MEDIUM	Y	FAIR	Y					
		<=30	MEDIUM	Y	EXCELLENT	Y					
		3140	MEDIUM	N	EXCELLENT	Y					
		3140	HIGH	Y	FAIR	Y					
		>40	MEDIUM	N	EXCELLENT	N					
				1	1	1					
4.	a)	What is a	ssociation	rule minin	g?ute O	f Techno	ology	2			
	b)	What is the role of support and confidence in the association rule?									
		What is the role of support and confidence in the association rule?									
	c)	Write down the Apriori Algorithm.									
	d)	Generate the frequent itemsets using the Apriori Algorithm with min support									
		\geq 50% and confidence \geq 80%.									
			TID	data	i4aman i	h a walik					
			TID	date	items_	bought					
			T100 10)/15/99	{K, A,	D, B}					
			T200 10)/15/99	$\{D, A, C\}$	\mathbb{C}, E, B					
			T300 10)/19/99	SC A	, B, E}					
					-///	/					
			T400 10)/22/99	$\{\mathrm{B},A\}$	A, D					
				-			_				
5.	Writ	te short notes on the following (any faux):									
5.	VV 110	te short notes on the following (any four): 4x5									
	a)	Asymmetric and Symmetric binary variables									
	• `										
	b)	OPTICS									
	c)	Confusion matrix									
	d)	Information Gain									
	9)	Overfitting									
	e)	Overmun	.g 								
(D:tt										
6.		ferentiate between the following (any four):									
	a)	STING vs CLIQUE									
	b)	Multi-layer neural network vs Backpropagation Pre-pruning vs post-pruning									
	c)										
	d)	Lazy Learning vs Eager Learning									
	e)	Star schema vs Snowflake Schema									
	<i>-,</i>	5.001 501101									