Total number of printed pages-7

53 (MA 401) NMCP

2018

NUMERICAL METHODS AND C PROGRAMMING

Paper : MA 401

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Write an algorithm to implement Euler's Improved method. Using Euler's Improved method, find y at x = 0.1 and

x = 0.2, given that $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1. 4+8=12

Contd.

(b) Solve $x^3 + 4\sqrt{x} - 3 = 0$ correct to 3 places of decimal by Bisection Method. 8

2. (a) Using Milne's method, find y(2) if y(x)is the solution of $\frac{dy}{dx} = \frac{1}{2}(x+y)$, given that y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968.

(b) Compute f'(0.1) from the following table : 6

nell marks for one minstions.

(c) What do you mean by relative error? Find the absolute error and the relative error if the number X = 0.004997 is rounded off to three decimal places.

3. (a) The pressure and the volume of a gas are related by the equation $PV^{\gamma} = K$; γ and K being constants. Fit the equation to the following set of observations :

 $P(kg/cm^2)$: 0.5 1.0 1.5 2.0 2.5 3.0 V(litres) : 1.62 1.00 0.75 0.62 0.52 0.46 0.4610

(b) Using three point Gaussian quadrature

formula evaluate
$$\int_{0}^{1} \frac{dx}{1+x}$$
.

5

(c) Using Regula-Falsi method, find the real root of $xe^x - 2x + 1 = 0$ correct to three decimal places. 5

4. (a) (i) Evaluate: $\frac{\Delta^2}{E}e^x \cdot \frac{Ee^x}{\Lambda^2 e^x}$, where h is

the interval of difference.

(ii) If the interval of difference is unity, prove that :

$$y_4 = y_3 + \Delta y_2 + \Delta^2 y_1 + \Delta^3 y_0.$$

3+3=6

9

- (b) For a given function f(x) = x³ and δx = 0.2, taking five decimal places obtain the absolute errors in f'(x) and f''(x) at x = 3.
- (c) Solve the following equations by Gauss Seidel iteration method correct to four decimal places :

 $7x_1 + 52x_2 + 13x_3 = 104;$

 $8x_1 + 11x_2 - 4x_3 = 95;$

 $3x_1 + 8x_2 + 29x_3 = 71.$

4

53 (MA 401) NMCP/G

5. (a) Using Newton's Interpolation formula, evaluate f(3.8) from the following data :

- (b) Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = xy + y^2$ with y(0) = 1at x = 0.1, 0.2, 0.3.
- (c) Using Newton-Raphson's method, find a real root of $e^x = 4 \sin x^{4}$ correct to three decimal places. 4
- 6. (a) The area A of a circle of diameter 'd' is given by the following :

5

d	:	80	85	90	95	100
Α	:	5026	5674	6362	7088	7854
Find the approximate area of the circle						
of diameter 82. 5						

53 (MA 401) NMCP/G

Contd.

- (b) State and prove Newton's Forward Interpolation Formula.7
- (c) Solve the differential equation $\frac{dy}{dx} - xy = 0; \quad y(0) = 1 \text{ from } x = 0 \text{ to}$ x = 0.25 using Euler's method.

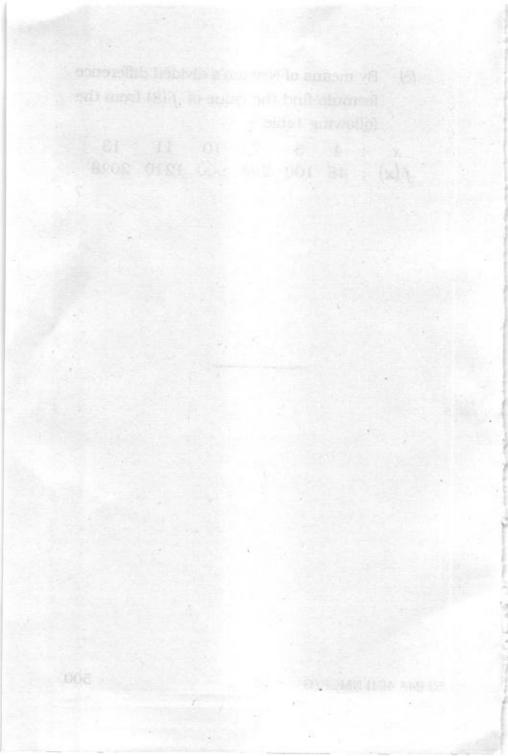
7. (a) Integrate
$$\int_{1}^{2} \frac{dx}{x}$$
 by calculus and by

Simpson's formula taking eight divisions and compute log 2.

6

7

DARAMAN FEAD ALSO


8

(b) Using Gauss elimination method, solve the equations :

 $3x_1 + 2x_2 - 2x_3 = -2$ $2x_1 + 4x_2 + x_3 = 3$ $x_1 - x_2 + x_3 = 6$

53 (MA 401) NMCP/G

(c) By means of Newton's divided difference formula find the value of f(8) from the following table :

