Total number of printed pages-8

## 53 (MA 302) DSMA

## 2017

## DISCRETE MATHEMATICS

Paper : MA-302

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

I. (a) If A, B and C are any three sets, then prove that

$$A - (B \cup C) = (A - B) \cap (A - C)$$

(b) If H and K are two normal subgroups of a group G, then prove that  $H \cap K$  is also a normal subgroup of G.

5

Contd.

(c) Examine the satisfiability of the following compound proposition by using truth table
 3

$$(p \rightarrow q) \land (p \rightarrow \neg q) \land (\neg p \rightarrow q) \land (\neg p \rightarrow \neg q)$$

(d) The Hasse diagram of the poset  $(A, \leq)$ , where  $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ , is given below :



Find the upper bounds of the subset  $B = \{2,3\}$ . Does *B* possess lub ? Justify your answer. 2+2=4

(e) Test whether the following degree vectorv is graphical or not.

v = [5443332]

2. (a) Using rule of inferences, show that ¬p is a valid conclusion of the following premises : 5

$$\neg (p \land \neg q), \neg q \lor r, \neg r$$

53 (MA 302) DSMA/G

- (b) If f:A→B and g:B→C are two one-one onto functions, then prove that
  g.f:A→C is also one-one onto. 4
- (c) Define group. Show that the set  $G = \{1, \omega, \omega^2\}$ , where  $\omega$  is an imaginary cube root of unity, is a group with respect to multiplication. 2+4=6
- (d) Draw the Hasse diagram of the poset  $(P(S), \leq)$ , where  $S = \{a, b, c\}$  and ' $\leq$ ' is a partial order relation on P(S) defined as  $A \leq B$  iff  $A \subseteq B$ . Hence show that  $(P(S), \lor, \land)$  is a lattice. 2+3=5
- 3. (a) Simplify 5  $f(x_1, x_2, x_3, x_4) = x'_1 x'_2 x'_3 x_4 + x'_1 x_2 x'_3 x_4 + x_1 x_2 x'_3 x_4 + x_1 x'_2 x'_3 x_4 + x_1 x'_2 x'_3 x_4 + x_1 x_2 x'_3 x'_4 + x_1 x_2 x_3 x'_4 + x_1 x_2 x_3 x'_4 + x_1 x'_2 x'_3 x'$ 
  - (b) Examine whether the following two graphs are isomorphic or not. 3





53 (MA 302) DSMA/G

3

Contd.

- (c) Show that  $(p \rightarrow r) \land (q \rightarrow r)$  and  $(p \lor q) \rightarrow r$  are logically equivalent.
- (d) Define equivalence relation. If R is a relation defined on  $N \times N$  by  $(x,y)R_{(z,t)} \Leftrightarrow x+t=y+z$ , where N is the set of all natural numbers, then show that R is an equivalence relation on  $N \times N$ . 2+4=6
- (e) Define alternating group. Give an example.
  - (f) Write the negation of  $(\exists x)(Px)$ . 1
- 4. (a) Show that the following compound proposition is a tautology :  $((p \rightarrow r) \lor (q \rightarrow r)) \leftrightarrow ((p \land q) \rightarrow r)$  3
  - (b) If f(x)=-|x| and  $g(x)=\log x$ , then determine whether the composite functions  $g \circ f$  and  $f \circ g$  exist. If they exist, then find  $g \circ f(x)$  and  $f \circ g(x)$ . 1+1+1+1=4

- (c) Show that if every element of a group is its own inverse, then G is abelian.
- (d) Draw the simple undirected planar graph represented by the following adjacency matrix. 2

| (0) | 1 | 1 | 1) |
|-----|---|---|----|
| 1   | 0 | 1 | 1  |
| 1   | 1 | 0 | 1  |
| (1  | 1 | 1 | 0) |

(e) Express f(x,y,z)=(x+y)(x+y')(x'+z)in DNF and CNF.  $2\frac{1}{2}+2\frac{1}{2}=5$ 

(f) Can a tree exist with the following degree vector, v = [142243]? Justify your answer.

(g) Show that  $\neg p \land p$  is a contradiction.

5. (a) Show that a non-empty subset H of a group G is a subgroup of G if and only if

(i) 
$$a \in H, b \in H \Rightarrow ab \in H$$

(ii) 
$$a \in H \Rightarrow a^{-1} \in H$$

53 (MA 302) DSMA/G

Contd.

- (b) Translate the following sentences into logical symbols.
  - (i) Not all complex numbers are real numbers.
  - (ii) There are some seniors who like physics but not mathematics.
  - (iii) The trains run late on exactly those days when I take it.
  - *(iv)* All students who like mathematics are intelligent.

1+1+1+1=4

- (c) Show that the sum of degrees of all vertices in a graph G is even. 4
- (d) Find all the ordered pairs in a relation R on the set  $A = \{1, 2, 3, 4, 5, 6\}$ , where R is defined as  $R = \{(a, b) | a \text{ divides } b\}$ .
- (e) Draw a graph of each of the following :
  - (i) Eulerian but not Hamiltonian
  - (ii) Hamiltonian but not Eulerian.  $1\frac{1}{2}+1\frac{1}{2}=3$

53 (MA 302) DSMA/G

(f) Examine whether the set Z of all integers with respect to the relation ' $\leq$ ' defined as  $x \leq y$  iff 5|x-y is a poset or not. 2

6. (a) Write the Boolean function of the following logic gate : 3



- (b) State the contrapositive and inverse of the following propositions : 2+2=4
  - (i) If it snows today, I will not ski tomorrow.
  - (ii) I come to class whenever there is going to be a quiz.
  - (c) If the truth value of  $p \rightarrow q$  is F, determine the truth value of the following compound proposition :

$$(\neg p \lor q) \rightarrow (p \leftrightarrow \neg q)$$
 2

53 (MA 302) DSMA/G

7

Contd.

(d) Draw a simple cubic graph G with six vertices. Also find  $\overline{G}$  (complement of G). 2+1=3

- (e) Let G be a simple graph with 13 vertices and 21 edges. If G consists of vertices of degrees 3 and 4 only, find the number of vertices with degree 3 and with degree 4.
- (f) Define cyclic group. Give an example with its generator(s).

(g) Decompose the following permutation into transpositions : 2

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 2 & 4 & 3 & 1 & 7 \end{pmatrix}$ 

53 (MA 302) DSMA/G