Total number of printed pages-6

53 (MA 201) ENMA-

2019

ENGINEERING MATHEMATICS-II

Paper: MA 201

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) If
$$u = \frac{y^2}{2x}$$
 and $v = \frac{x^2 + y^2}{2x}$, then find
$$\frac{\partial(u, v)}{\partial(x, y)}.$$

(b) Show that
$$\frac{1}{2} = \sqrt{x}$$
.

Contd

(c) Find the Fourier series for the function defined as

$$f(x) = \begin{cases} \pi x, & 0 \le x < 1 \\ \pi (2 - x), & 1 \le x \le 2 \end{cases}$$

Hence, deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 8+2=10

2. (a) Find median and mode from the following data:

3+3=6

υ	10	18	9	ယ	Frequency
60-76	20-30 30-40 40-50 50-60 60-76	40 - 50	30 - 40	20 - 30	Class interval

- (b) If two dice are thrown together, find the probability of getting either at least one 6 or a sum of 8.
- (c) The function f(x) is given as

$$f(x) = \begin{cases} x, & 0 < x \le 1 \\ \frac{3-x}{4}, & 1 < x \le 3 \\ 0, & \text{elsewhere} \end{cases}$$

Can f(x) be a probability density function? If so, find the distribution function. 4+6=10

53 (MA 201) ENMA-II/G 2

- 3. (a) If $u = x\sqrt{1-y^2 + y\sqrt{1-x^2}}$ and $v = \sin^{-1} x + \sin^{-1} y$, show that u and v are functionally related. Also, find their relationship. 2+2=4
- (b) Find the Fourier series for the function f(x) = x in the interval $(-\pi, \pi)$.
- (c) Show that, $\beta(m+1, n) + \beta(m, n+1) = \beta(m, n)$ 4
- (d) If X is a random variable with probability mass function $P(X = x) = q^x p$; $x = 0, 1, 2, ..., \infty, p + q = 1$, find the moment generating function of X and hence find E(X).
- Show that any square matrix can be uniquely expressible as sum of a symmetric matrix and a skew-symmetric matrix.
- (b) Using Green's theorem, evaluate $\oint_C (xy + y^2) dx + x^2 dy$

where C is the closed curve of the region bounded by y = x and $y = x^2$. 5

(c) Reduce the following matrix to normal form:

0

Reduce the following matrix to its row

echelon form and hence find its rank.

(d) Show that the matrix

ω

TOMO MAR

(a)

Find the inverse of the following matrix:

OF TECHNOLOGY

(d) If A is real skew-symmetric matrix such that $A^2 + I = 0$, show that A is orthogonal.

9

EMTROL METTY

- (b) Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line P(0, 2, 3) is the point P(0, 3, 4).
- (c) Find the unit tangent vector to any point on the curve $x = a \cos t$, $y = a \sin t$, z = bt.
- 5. (a) Evaluate by Stokes' theorem $\oint_C \left(e^x dx + 2y dy dz\right),$ where C is the curve $x^2 + y^2 = 4$, z = 2.
- (b) If $F = 3xy\hat{i} y^2\hat{j}$, evaluate $\int_C F \cdot dr$, where C is the curve in the xy-plane $y = 2x^2$ from (0, 0) to (1, 2).

(d) The acceleration of a point at any time $t \ge 0$ is given by

$$a = \frac{dv}{dt} = 12\cos 2t \,\hat{i} - 8\sin 2t \,\hat{j} + 16t \,\hat{k}.$$

If the velocity v and displacement r are zero at t = 0, find v and r at any time.

