53 (MA 101) ENMA-I

2017

ENGINEERING MATHEMATICS-I

Paper: MA 101

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at (x,y).
 - (b) Find the volume of the solid formed by revolving the cycloid $x = a(\theta \sin \theta)$ and $y = a(1 \cos \theta)$ about its base.

(c) If
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
, show that
$$x^2 y_{n+2} + (2n+1)xy_{n+1} + 2n^2 y_n = 0.$$

6

- 2. (a) Show that the series $\sum_{n=1}^{\infty} \frac{(n+1)^n \cdot x^n}{n^{n+1}}$ is convergent if x < 1 and divergent if $x \ge 1$.
 - (b) Prove that the lines $\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-4}{5}$ and 2x-3y+z=0=x+y+2z+4 are coplanar. Find also their point of intersection. 5+1=6
 - (c) If (l_1, m_1, n_1) and (l_2, m_2, n_2) be the direction cosines of two perpendicular lines. Then prove that the direction cosines of the line perpendicular to both of them are $m_1n_2 m_2n_1$, $n_1l_2 n_2l_1$ and $l_1m_2 l_2m_1$.
 - (d) Using comparison test, show that the series $\sum_{n=1}^{\infty} \frac{n+1}{n \cdot 3^{n+1}}$ is convergent.
- 3. (a) Solve: (any three) 3×4=12

(i)
$$\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 18y = 0,$$
$$y(0) = 0, \ y'(0) = 0, \ y''(0) = 2$$

(ii)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = e^x \cosh 2x$$

(iii)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x$$

(iv)
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$$

(b) Form the differential equation from: 4+4=8

$$(i) \quad Ax^2 + By^2 = 1$$

(ii)
$$Ae^{3x} + Be^x = y$$

4. (a) Solve:

4×2=8

$$(i) \quad y = 2px + yp^2$$

(ii)
$$y = (x-a)p - p^2$$

- (b) Is the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\lfloor n \rfloor}$ converge absolutely? Justify.
- (c) Find the equation of the evolute of the parabola $y^2 = 4ax$.

- 5. (a) Find the asymptotes of the curve $x^3 + 3x^2y 4y^3 x + y + 3 = 0$
 - (b) Show that the length of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ is 6a.
 - (c) Solve: (any two) 4+4=8

(i)
$$(x+1)\frac{dy}{dx} = x(y^2+1)$$

(ii)
$$(x^2 - y^2)dx - xy dy = 0$$

(iii)
$$e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$$

- 6. (a) Find the equation of the plane passing through the middle point of the join of the point (2,-3,1) and (4,5,-3) and in perpendicular to the line joining the points.
 - (b) Find the equation of the sphere through the points (0,0,0), (1,-1,0), (2,0,-2) and (0,1,2).
 - (c) Solve the simultaneous equations

$$\frac{dy}{dt} = 3x - 2y; \quad \frac{dx}{dt} = -2x + 3y$$
 4

(d) Show that the function $f(x,y) = 2x^4 - 3x^2y + y^2 \text{ does not have a maximum or a minimum at } (1,1).$