53 (IT 504) DAAL

2019

DESIGN AND ANALYSIS ALGORITHM

Paper: IT 504

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

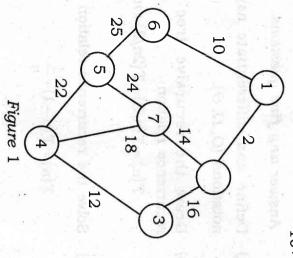
- 1. (a) Define and differentiate asymptotic notations (O, Ω, Θ) .
 - (b) Draw the recursive tree for the recurrence relation

$$T(n) = T(n/3) + T(2n/3) + n$$

7

(c) Solve the recurrence relation

$$T(n) = T(n-1) + \frac{1}{n}$$


Contd.

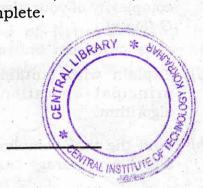
2 (a) Prove that if

$$f(n) + a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$$

and $a_m > 0$, then $f(n) = 0(n^m)$.

(b) Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

- 0 State and explain Master Theorem with examples.
- ω of the graph shown in the Figure 1. algorithm to find minimum spanning tree Show steps of Kruskal's and Prim's


10+10=20 CENTRALLIBRARY Çī

- (a) Consider the array [4, 1, 3, 2, 16, 9, 10, 14, 8, 7].
- (i) Draw the corresponding complete binary tree.
- (ii)Illustrate the operation of Buildmake a heap tree. Max-Heap (A, 8) on the array to
- (b) complexity of your algorithm should be O(log n). in position i of a max heap tree. The Write an algorithm to delete the element
- (a) Explain with suitable example, the algorithm. principal operation of Quicksort
- 9 algorithm (average case). Find the time-complexity of Quicksort
- (a) Suppose A[1:m] and B[1:n] both that merges decreasing order. Write an algorithm contains sorted elements in non-C[1:m+n].these items into
- (b) Explain 4-Queen's problem. Write an algorithm of n-Queen's problem. 12

N

(a) Differentiate between greedy and dynamic programming.

- (b) Write the algorithm of travelling salesman problem using. dynamic programming.
- (c) Discuss diagrammatically the relation among P Class, NP Class, NP Hard and NP Complete.

