Total number of printed pages-7

53 (IT 503) THCP

2018

THEORY OF COMPUTATION

Paper : IT 503

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five out of seven questions.

- 1. (a) Define the detail Chomsky classification of grammer and also define Chomsky hierarchy. 6
 - (b) Draw the DFA for the following languages 5+5
 - (i) Language over the alphabet $\sum = \{a, b\}$ that have the set of all strings, where the last symbol in input string appears earlier in the string?

- (ii) Language over the alphabet $\sum = \{a, b\}$ that have the set of all strings, where the number of b's divisible by 3.
- (iii) What is ambiguity? Show that $S \rightarrow Sa | aS | a$ is an ambiguous grammer. 2+2
- 2. (a) Consider the following grammer: 8 $S \rightarrow bA \mid aB$

A - bAA | aS | a

 $B \rightarrow aBB \mid bSb$

find the left most derivation and right most derivation and parse tree for the string baaabbabba.

(b) Construct the GFG for the PDA $p = (\{p, q\}, \{0, 1\} \{X, Z_0\}, \delta, q, Z_0), \text{ if } \delta$ is given by 8 $\delta (q, 1, Z_0) = \{(q, XZ_0)\}$ $\delta (q, 1, X) = \{(q, XX)\}$ $\delta (q, 0, X) = \{(q, XX)\}$ $\delta (q, \varepsilon, X) = \{(p, X)\}$ $\delta (p, 1, X) = \{(p, \varepsilon)\}$ $\delta (p, 0, Z_0) = \{(q, Z_0)\}$

- (c) Define left linear and right linear grammer with examples. 4
- 3. (a) Remove ε -transitation from the following grammer 6
 - $S \rightarrow aSbS | bSaS | \varepsilon$
 - $S \rightarrow AB \mid aaB$

 $A \rightarrow a \mid Aa$

 $B \rightarrow b$

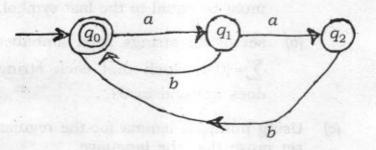
- (b) Write down the regular expression for the following languages 4+4
 - (i) set of all strings from alphabet $\sum = \{0, 1\}$ such that first symbol must be equal to the last symbol.
 - (ii) set of all strings from alphabet $\sum = \{0, 1\}$ such that each string does not end in 01.
- (c) Using pumping lemma for the regular set prove that the language

$$L = \left\{ 0^n 1^m \mid n < = m \right\} \text{ is not regular}$$

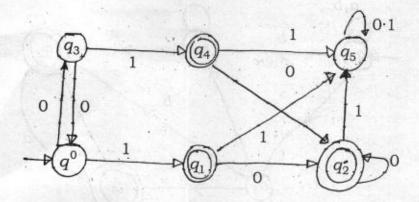
53 (IT 503) THCP/G

3

Contd.


6

- 4. (a) Construct the PDA for the language $L = \left\{ WW^R \mid W \in \{0, 1\} \right\}$ 8
 - (b) Determine the deterministic push down automata DPDA. Is it true that DPDA and PDA are equivalent in the sense of language acceptance is concern?


4 + 2

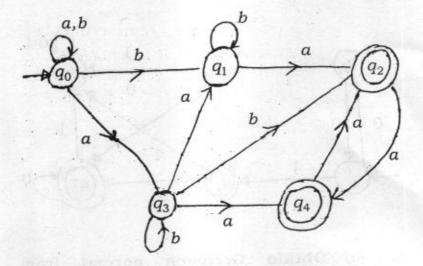
7

- (c) Construct a DFA for the regular expression aa*|bb*. 6
- 5. (a) Define Regular expression and its importance in automata theory. 3+3
 - (b) Give the Regular expression accepted by following finite automata. 7

(c) Minimize the following DFA.

6. (a) Obtain Greibach normal from equivalent of the following context free grammar.

 $S \rightarrow 0 | AA$


 $A \rightarrow 1 | SS$

(b) Determine the DFA equivalent to the following NFA and by taking suitable example prove that both will accept or reject the same set of strings.

6+2

53 (IT 503) THCP/G

Contd.

(c) Differentiate between the following: 2+2

(i) δ and $\delta *$

(ii) \sum and $\sum *$

- 7. (a) What a language is said to be recursive or recursively enumerable? 4
 - (b) Define Turing Machine (TM). Differentiate the Deterministic and Non Deterministic Turing Machine.

4+4

(c) Consider the language

 $L = \{WW^{R} | W \in \{0, 1\}\}, \text{ construct a}$ Turning Machine for a Language L. 8