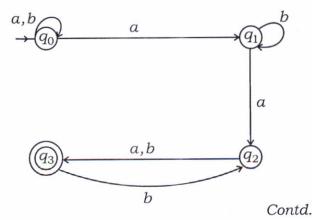
53 (IT 503) THCP

2016

THEORY OF COMPUTATIONS

Paper: IT 503


Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer five questions.

- 1. (a) Explain the difference between NFA and DFA with suitable example. 5
 - (b) Construct a DFA equivalent to the following NFA.

2. (a) Construct a PDA accepting by empty store the following language. 10

$$a^n b^m a^n$$

(b) Construct a PDA equivalent to the following CFG:

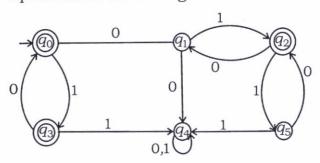
$$S \rightarrow OBB$$
, $B \rightarrow OS \mid 1S \mid O$.

Test whether 010^4 is in N(A). 10

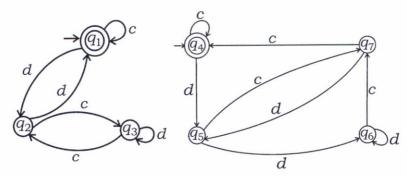
- 3. (a) Reduce the following grammar to CNF: 10 $G = (\{S\}, \{a, b, c\}, \{S \rightarrow a \mid b \mid cSS\}, S)$
 - (b) Find a reduced grammar equivalent to the grammar.

$$S \rightarrow aAa, A \rightarrow bBB, B \rightarrow ab, C \rightarrow aB$$
.

4. (a) What is an ambiguous CFG? Show that the grammar 10 $S \rightarrow a \mid ab5b \mid aAb$, $A \rightarrow bS \mid aAAb$ is ambiguous.


- (b) Construct the CFG generating the following languages: 5+5
 - (i) The set of all strings over $\{a,b\}$ consisting of equal numbers of a's and b's.

(ii)
$$L = \left\{ a^n / n >= 0 \right\}$$


- 5. (a) Define Linear Bounded Automata and Non Deterministic Turing Machine. Explain in brief the difference between them. 5+5=10
 - (b) Construct the computation sequence for strings 1213, 312, 112233 for the Turing Machine given below: 10

Y	O			
Present State	Input Tape Symbol			
	1	2	3	b
$\rightarrow q_1$	bRq_2			bRq_1
q_2	$1Rq_2$	bRq_3		bRq_2
q_3		$2Rq_3$	bRq_4	bRq_3
q_4			$3Lq_5$	bLq_7
q_5	$1Lq_6$	$2Lq_5$		bLq_5
q_6	$1Lq_6$			bRq_1
$\overline{q_7}$				2:

6. (a) Construct a minimum state automaton equivalent to the DFA given below: 10

(b) Find whether the following DFA's are equivalent 10

7. Write short notes on:

- $10 \times 2 = 20$
- (a) Chomsky Classification of Language.
- (b) Pumping Lemma for Regular Languages.