Total number of printed pages-4

53 (FT 502) OPSY

2019

OPERATING SYSTEM

Paper: IT 502

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. Answer in short:

2×10=20

- (a) What is process synchronization?
- (b) Define the term distributed operating system.
- (c) What is the kernel in operating system?
- (d) What is a spin lock?
- (e) State the priority inversion problem.
- (f) What are the throughput and turnaround time?

Contd.

- (g) What is a critical region?
- (h) What is a thread?
- (i) Define starvation in deadlock.
- (j) What is a system call?
- $5 \times 4 = 20$

N

- (a) Explain how operating system acts as resource manager.
- (b) What is race condition? Give one example.
- (c) What is strict alternation approach to the critical region problem? State its disadvantage.
- (d) Discuss how producer consumer problem can be solved using message passing approach.
- (a) Consider the following processes with their arrival time and CPU burst time.

w

Process Arrival time Burst time

P5	P4	P3	P2	P1
4	3	20		0
5		ω	2	10

- Calculate the average waiting time and turnaround time for those processing using FCFS, SJF and Round Robin (time quantum = 2 sec.) scheduling algorithms.
- (b) Discuss with diagram the three level scheduling used in batch operating system.
- (a) Compare and contrast the following resource allocation policies: 15

HALOLOGY KOKES

- (i) All resources request together
- (ii) Allocation using global numbering
- (iii) Allocation using Banker's algorithm.
- (b) What is deadlock? Write the necessary conditions that cause deadlock situation to occur.

- (a) Why should page replacement be performed? Compare the following page replacement algorithms FIFO, Optimal and LRU.
- (b) What is the use of an I/O module?

 Discuss the three basic I/O techniques those involved in various I/O operations.
- 6. Write short notes on: (any four) $4 \times 5 = 20$
 - (a) Diving Philosophers Problem
 - (b) Monolithic system
 - (c) Swapping and paging
 - (d) Process states
 - (e) Peterson's solution.

