1

53 (IT 303) DGLD

2016

DIGITAL LOGIC DESIGN

Paper: IE 303

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

(a)	Write down BCD & Ex-3 code of 562
	2
(b)	Convert $(1011.01)_2$ to Decimal.
(c)	State De-Morgan's Law.
(d)	Define Minterm.
(e)	Why NAND, NOR Gates are called universal gate?
(f)	Use only NOR Gate to realize AND function.
(g)	Use K-map method to simplify
	$f(w,x,y,z) = \sum m(0,1,3,5,9,10,11,12,13)$
	5

	_		_	/ - \	/	
(h)	Prove	that	a + bc = 0	(a+h)	1a+c	1
1111	ITOVO	uiuc	u l bc -	I u I D I	nu i c	,

2. (a) Simplify using Boolean algebra

$$Y = f(x,y,z) = x'yz + xy'z' + x'y'z + xyz + x'y'z'$$

- (b) Use basic gates to realize Y = (a+b')cd + a'bc' 2
- (c) Design a Full Subtractor. 5
- (d) Convert $(F23E \cdot E1)_{16}$ to Binary. 1
- (e) Draw block diagram of a 2 bit ripple carry adder and explain its addition operation. 2+3=5
- (f) Use NAND Gate only to implement Y = a' + b'c 3
- (g) Convert $(F20 \cdot I)_{16}$ to Decimal. 1
- 3. (a) Design a 8:1 Multiplexer. 5
 - (b) Distinguish between Decoder and Encorder. 2
 - (c) How many control lines are needed to design a 16:1 Multiplexer?

- (d) Convert (71), to decimal.
- (e) Use K-map method to simplify into product of sum form

$$f(w, x, y, z) = \pi M(0, 2, 3, 4, 9, 10)$$
 5

- (f) Draw the circuit diagram of a S-R latch and explain its truth table.
- (g) Draw the block diagram of 2 bit connter.
- 4. (a) Simplify using Boolean algebra $Y = (a+b+c') (a+b+c) \overline{(a+b)}$
 - (b) What do you mean by don't care conditions and how don't care conditions help to simplify Boolean function using K-map method?

 1+2=3
 - (c) Explain the truth table of J-K latch.
 - (d) What are the main differences between sequential and combinational logic? 3
 - (e) Perform subtraction using 2's complement method 1011 1100. 2
 - (f) What is race around condition? 2
 - (g) Perform addition and division $1.5 \times 2=3$
 - (i) 1111 + 1111 (ii) 101010 ÷ 10

1

3

5.	(a)	Design a Mod-5 Counter.
	(b)	Explain the operation of a 3 bit registe with its block diagram.6
	(c)	Define Quad and Octet.
	(d)	State commutative law of Boolean algebra.
6.	(a)	Design a 4 bit Binary to Gray converter
	(b)	Describe the operation of a 2 bits synchronous counter with timing diagram.
	(c)	Simplify using Boolean algebra.
		$Y = xy + \overline{xyz} + \overline{xy}$
	(d)	Explain the operation of M-S D-Flip Flop.
7.	(a)	Design a BCD adder.
	(b)	Write down the Excitation tables fo J-K Flip Flop, D Flip Flop, S-R Flip Flop.
	(c)	Draw the circuit diagram of D-latch.