2013

(December)

ELECTRONIC INSTRUMENTATION

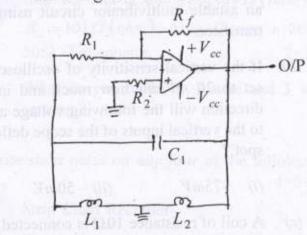
Paper: IE-504

Full Marks: 100

Pass Marks: 30

Time: Three hours

The figures in the margin indicate full marks for the questions.


Answer any five questions.

- (a) How the overall efficiency of a coil and capacitor can be evaluated?
 - (b) Establish the mathematical relationship to measure the value of Q of a coil. 7
 - (c) A circuit consisting of a coil, a resistance and a variable capacitor connected in series is to tuned to resonance using a Q meter. If the frequency is 500kHz, the resistance 0.5Ω and the variable capacitor set to 350 P.F. calculate the effective inductance and resistance of the coil, if the Q meter indicates 90.

(d)	Draw the practical circuit of a Q meter. How					: How
	a capacitor	value	can	be	calculated	using
	the circuit?			3+2=5		

- (a) Draw an equivalent circuit of an oscillator, also determine how output impedance value can be calculated.
 - (b) What are the different A.C signal generators?
 - (c) State and explain the selection criteria of oscillator. 6
 - (d) Draw and explain the basic Hartley oscillator circuit.3
 - (e) State the two "Bark Hansen" criteria. 3
- (a) Discuss with block diagram for an instrument that produce sine wave output whose frequency is automatically swept.
 - (b) What is the importance of offset null in IC 741? Define CMRR in case of OP-AMP. 2+3=5
- (c) What is IEEE 488 bus? What are its mode of applications? 5+2=7

4. (a) Determine the value of L_2 and C_1 of the following oscillator circuit.

$$L_1 = 10 \,\mu\text{H}$$
 $R_f = 405 \,k\Omega$
 $R_1 = 15 \,k\Omega$ $R_2 = 10 \,k\Omega$
 $L_1 = 10 \,\mu\text{H}$ $f_0 = 300.9 \,k\text{Hz}$

- (b) What are the two resonance frequencies in case of crystal oscillator? Also, draw the equivalent circuit for crystal oscillator. 4
- (c) Draw a circuit diagram that is designed for generation of high frequency sinusoidal oscillation. (Range 10 kHz to 100 MHz).
- (d) What is pulse generator? What are the characteristics of ideal characteristic pulse wave? Also draw the characteristic curve of actual pulse wave.

- 5. (a) How non sinusoidal waveform can be generated using astable multivibrator. Draw an astable multivibrator circuit using PNP transistor.
 - (b) If the vertical sensitivity of oscilloscope is set to 20 mV/div, how much and in what direction will the following voltage applied to the vertical inputs of the scope deflect the spot?
 - (i) -75mV
- (ii) 50mV.

3

- (c) A coil of resistance 10Ω is connected in the Q meter circuit. Resonance occurs at a frequency of 1MHz with the tuning capacitor set at 65PF. Calculate the percentage of error introduced in the calculated value of Q if resistance of 0.02Ω is used across the oscillator circuit.
- (d) Explain how audio frequency can be generated.
- 6. (a) Define ground loop. How ground loop interference occurs and how it is eliminated?

7

(b) What are the components of a oscilloscope subsystem? Discuss in detail about vertical deflection sub-system.

- (c) In case of symmetrical T-attenuator, find R_0 and α for $R_1 = 409 \Omega$ (ohm) & $R_2 = 101 \Omega$ (ohm). Also, Design a 20dB, 50Ω T-attenuator. 2+3=5
- (d) What do you mean by 2 wire and 3 wire 'sensing?
- 7. Write short notes on *any four* of the following: 4×5=20
 - (i) Strip Chart Recorder
 - (ii) Electronic Analog A.C. Voltmeter
 - (iii) Electronic Analog ammeter
 - (iv) Four wire sensing
 - (v) PLL
 - (vi) Magnetic Recorders
 - (vii) Digital Voltmeter
 - (viii) Frequency Selective wave Analyzer
 - (ix) Electronic Instrumentation and Energy Conservation.