Total number of printed pages-4

53 (IE 712) CPCN

2018

COMPUTER CONTROL OF PROCESS

Paper : IE 712

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Symbols have their usual significance.

Answer any five questions taking at least two questions from each group.

Group-A

- 1. (a) Draw the schematic diagram of a direct digital control (DDC) system and explain its operation. 10
 - (b) List and explain the network components of an integrated control system (ICS). 10
- 2. (a) Explain the operation of a distributed control system (DCS). 10

Contd.

(b)	Mention the advantages and disadvantages of DCS. 5
(c)	Describe the characteristics of different Buses. 5
(a)	Explain how you correlate the hierarchical level, the response time and data quantity. 10
(b)	Write a short note on : 10
	(i) OSI model and
	(ii) forward & backward chaining.
(a)	Draw the sehematic block diagram of a PLC and explain the operation of each block. 10
(b)	Draw the PLC ladder diagram for the logic gates :
	(i) NAND
	(ii) NOR and
	(iii) XOR. 5
(c)	What do mean by $T_{ON} = 10 sec$ and

 $T_{OFF} = 10 sec$ in PLC timer operation.

5

53 (IE 712) CPCN/G

3.

4.

2

Group-B

- 5. (a) What are the different algorithms used for implementation of analog controllers? Derive the algorithms for PI controller using forward rectangular rule for integration. 10
 - (b) Derive the difference equation of u(k)vs. c(k) for PI Control using trapezoidal rule for integration term. Find the change in output at third sample for the following data :

 $K_p = 1.5, T = 0.6 \, sec$, reset time = $1.8 \, sec^{-1}$. derivative time = $8 \, sec$, $e_1 = 2, e_2 = 1$ and $e_3 = 4$.

6. (a) State initial value theorem (IVT) and final value theorem (FVT) for Z-transformation. Find the final value of f(k) using FVT for the following function

$$F(z) = \frac{0.792 z^2}{(z-1)(z^2 - 0.416z + 0.208)}$$
 10

(b) For the following discrete transfer function, obtain the difference equation u(k).

$$\frac{U(z)}{E(z)} = \frac{z^2 + z}{z^2 - 1.2z + 0.5}$$

53 (IE 712) CPCN/G

3

Contd.

- 7. (a) Derive the generalized equation of a controller for a digital control system. Using this equation, derive Daedbeat controller algorithm.
 - (b) The open loop transfer function of a

plant is given by $G(s) = \frac{e^{-2s}}{10s+1}$.

Design a Deadbeat digital controller for the system. Assume that the desired closed loop transfer function

is
$$T(z) = z^{-k}$$
, $k > = 1$ and $T = 1 \sec x$.

12

- 8. Write short notes on **any four** of the following: 4×5=20
 - (a) Merits and demerits of digital control system
 - (b) Stability analysis of discrete data system
 - (c) Signal discretization techniques
 - (d) Jury's stability test
 - (e) Dahlin's controller.