53 (IE 604) CNSY-II

2014 + 2 2

CONTROL SYSTEM-II

a of Joodstavo Paper : IE 604 add

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) The open loop Transfer Function of a system

is
$$G(S) = \frac{5}{S(S+1)(S+2)}$$
. It is desired to

compensate the system so that the stati velocity error constant K_V is 5 sec^{-1} , the phase margin is 40° and Gain margin is at least 10dB.

(b) A unity feedback system is characterized by the open-loop transfer function

$$G(S) = \frac{K}{S(S+3)(S+9)}$$

Determine - 2 / 2 JOHTMOD

- (i) the value of K if 20% overshoot to a step input is desired.
- (ii) the settling time and K_V for the above value of K.
- (iii) the cascade compensator for the same overshoot and settling time and $K_V \ge 20$.
- 2. *(a)* Obtain the State Space model of the electrical network shown in *Fig.* (2.a). Select suitable state variables and output variable. 5

Fig. (2.a)

(b) Using Laplace transform method, determine time response of a system having state model

$$\dot{x}_{1} = x_{2} + u(t)$$

$$\dot{x}_{2} = -2x_{1} + 3x_{2}$$

where,
$$u(t) = e^{-t}$$
 for $t \ge 0$
= 0 for $t < 0$
and $x_1(0) = x_2(0) = 0$

(c) Comment on the controllability of the system having following co-efficient matrices

bondom on
$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$

$$C = [1 \text{ no no } 1], \text{ as } D = 0 \text{ ninmob } 2$$

10

3. (a) Consider the system given by $\dot{x} = Ax + Bu$.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The system uses the state feedback u = -kx. The desired closed-loop poles at $S = -2 \pm i4$, S = -10.

Determine the state feedback gain matrix.

10

(b) Draw the phase plane portraits of the following system, using isocline method

$$\ddot{x} + \dot{x} + 0.5x = 0$$

4. (a) Find the closed loop transfer function in z domain of the system in Fig. (4.a). 10

Fig. (4.a)

(b) Determine the pulse Transfer Function of the system given in Fig. (4.b).

(c) Obtain the range of the k for stable system.

$$F(z) = z^{3} + z^{2} + z + k = 0$$

5. (a) Find the describing function for the non-linear system having characteristic as shown in Fig. (5.a).

Fig. (5.a)

(b) A two phase servomotor is driven by an amplifier as shown in Fig. (5.b). The transfer function of the motor is

$$G(S) = \frac{k'e^{-S}}{S(S+1)}$$

Investigate the stability of the system for k' = 1. What is the largest value of k' for no limit cycle to exist?

linear syste (6.5) giff characteristic as shown

- 6. (a) State and prove the 1st and 2nd Lyapunov's stability theorem.
 - (b) Consider the non-linear system $\dot{x}_1 = x_2 3x_1$

 $\dot{x}_2 = -x_2^3 - 2x_1$

Prove that the system is asymptotically stable.

- (c) Explain the limit cycle in the analysis of a non-linear control system.
 - 7. Write short notes on : (any four) 4×5

The med and his his sound of the bank of the

The openion Thoses As Ation of a steam

- (a) Lead compensator
- (b) Back lash
 - (c) Singular Point
 - (d) Isocline method
 - (e) State Transition Matrix.