53 (IE 604) CNSY

compensate 17102 men that the static

CONTROL SYSTEM-II

Paper: IE 604

Full Marks: 100

Time: Three hours

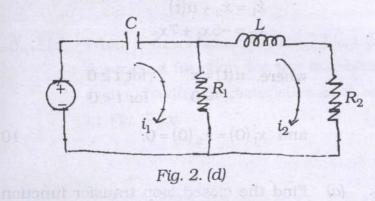
The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) A unity feedback system is characterized by the open-loop transfer function

$$G(s) = \frac{k}{s(s+3)(s+9)}$$

Design a cascade compensator for the system. If 20% overshoot to a step input is desired find the value of k. Also velocity error constant, $kv \ge 20$ should be maintained.


- (b) The open loop transfer function of a system is $G(s) = \frac{10}{s^2}$. It is desired to compensate the system so that the static velocity error constant kv is $5sec^{-1}$, the phase margin is 40° and gain margin is at least 10dB.
- 2. (a) What is lag-lead compensator? Why this type of compensator is connected to the control system? 3+2
 - (b) If the transfer function of lead compensator is $G_e(s) = \frac{s+1/e}{s+1/\alpha e}$, show that the maximum phase lead by the compensator be $\phi_m = \sin^{-1}\frac{1-\alpha}{1+\alpha}$ at the frequency of $w_m = \frac{1}{e\sqrt{\alpha}}$.

(c) Determine the transfer function from the data given below

$$A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = 0.$$

5

(d) Obtain the state space model of the electrical network shown in Fig. 2. (d). Select suitable state variables and output variables.

3. (a) Consider the system given by $\dot{x} = Ax + Bu$. Where,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The system uses the state feedback u = -kx. The desired closed loop poles at

$$s = -2 \pm j4$$
, $s = -10$.

Determine the state feedback gain matrix.

(b) Using Laplace transform method, determine time response of a system having state model as ...

$$\dot{x}_1 = x_2 + u(t)
\dot{x}_2 = -5x_1 + 7x_2$$

where,
$$u(t) = e^{-t}$$
 for $t \ge 0$
= 0 for $t < 0$

and
$$x_1(0) = x_2(0) = 0$$
: 10

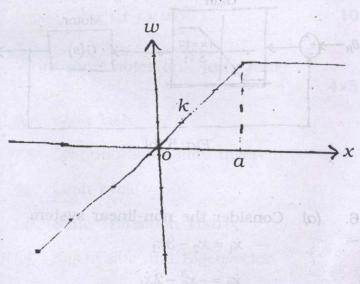
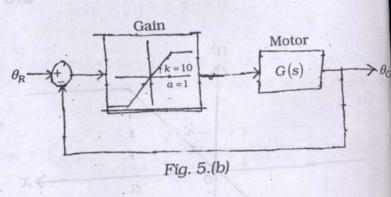

(a) Find the closed loop transfer function in Z domain of the system in Fig. 4. (a). 10

Fig. 4. (a)

Check the stability of the system having characteristics equation -5

$$p(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08 = 0$$


- (c) What is pulse transfer function? Derive the pulse transfer function of Zero Order Hold (ZOH) circuit. 2+3
- 5. (a) What is describing function? Find the describing function for the non-linear system having characteristics as shown in Fig. 5. (a).

(b) A two phase servomotor is driven by an amplifier as shown in Fig. 5.(b). The transfer function of the motor is

$$G(s) = \frac{k}{s(s+1)(s+2)}$$

Investigate the stability of the system for k = 1. What is the largest value of k for no limit cycle to exist?

6. (a) Consider the non-linear system

$$\dot{x}_1 = x_2 - 3x_1$$

$$\dot{x}_2 = -x_2^3 - 2x_1$$

Prove that the system is asymptoticall stable.

(b) Comment on the controllability of the system having following co-efficient matrices.

$$A = \begin{bmatrix} -1 & -2 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad D = 0$$

(c) Draw the phase plane portraits of the following system, using isocline method.

$$\ddot{x} + \dot{x} + x = 0 \tag{10}$$

7. Write short notes on: (any four)

4×5

- (a) Back lash
- (b) Lyapunov's stability theorem
- (c) Limit cycle
- (d) State Transition Matrix
- (e) Eigenvalue and Eigenvector.