Total number of printed pages-8

53 (IE 501) MPMC

2018

MICROPROCESSOR AND MICROCONTROLLERS

Paper : IE 501

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any four from the rest.

- 1. Answer the following questions in brief : 10×2=20
 - (a) Mention two advantages of Assembly Language over Machine Language.
 - (b) What is the need of Microcontrollers when we already have powerful Microprocessors?
 - (c) How can we identify the size of an instruction of 8085?

Contd.

- (d) Specify the meaning of the instructions — INR M and DCX H.
- (e) If the size of a memory chip is 256 × 4 bits, how many such chips will be required to build a 16 k byte memory system?
- (f) Specify the Machine cycles and T-states for the instructions — ADD B and MOV A, M.
- (g) In a memory mapped I/O, can an I/O Device have the same address as a memory register. Justify.
- (h) For detecting an emergency situation and performing its related task, which pin of the 8085 should be used and why?
- (i) State the function of stack pointer register.
- (j) Specify the status of flags after the execution of instruction XRA.

53 (IF 501) MPMC/G

2. (a) Write an Assembly Language Program to compare the data in memory locations D000H and D001H, and display the larger data at port 01H and smaller data at port 02H.

4

5

(b) For the program given below, answer the questions that follow—

MVI A, FOH NEXT→ ADI 08H JNC NEXT ADD A JZ DISPLAY SUB A DISPLAY→ Out 02H HLT

- (i) No. of times the instruction ADI is executed
- (ii) Status of flags after execution of ADD A(iii) Value displayed at 02H
- (c) A memory chip with 2^N registers require
 'N' number of address lines. Explain with the help of a diagram.

5

(d) Explain the meaning of instruction LDA
 D050 H with the help of its bus timing
 diagram.

53 (IE 501) MPMC/G

3

Contd.

3. (a) State the functions of the following pins — 4

ALE, IO/M, INTR, INTA

- (b) Draw the external logic circuit required to generate the control signals $\overline{\text{MEMR}}$, $\overline{\text{MEMW}}$, $\overline{\text{IOR}}$ and $\overline{\text{IOW}}$ by combining the pins $\text{IO}/\overline{\text{M}}$, $\overline{\text{RD}}$ and $\overline{\text{WR}}$.
- (c) In the *figure* given below, answer the following 8

4

53 (IE 501) MPMC/G

- (i) Total memory capacity of the system in Bytes.
- (ii) Additional no. of similar chips required to make up 32 kbytes.
- (iii) Address range of both M_1 and M_2 chips.
- (iv) What would be the Address range if A₁₅ had been connected via a NOT gate ?
- (d) Mention at least four differences between peripheral I/O and memory mapped I/O techniques.
 4
- 4. (a) It is required to count the number of data equal to 00 H from memory locations starting at C000H to C00F H and store the total count in D000 H. Draw the required flowchart and write the corresponding program in Assembly Language. 8

5 Contd.

(b) For the given program, answer the following questions :
 (E000H - E00A H) = (01, 05, 08, 09, FF, F0, 42, A0, 57, 65, 40) H

	LXI H, E000H	- bea	
	MVI B, OA H		
	MVI C, OOH	(i)	Task performed by the program
NEXT→	MOV A, M	(ii)	Value displayed at 02 H
	INX H	(iiii)	No. of times loop 'NEXT'
	RAR		is executed
	JNC CHECK	(iv)	Time required to execute
	INR C		the whole program if the
CHECK→	DCR B		clock frequency is 2MHz.
	JNZ NEXT	1	
	MOV A, C	10,000	
	OUT 02H	11 23	poddyrig .
	HLT		2+2+2+6=12

5. (a) Explain the meaning of following instructions with suitable examples – 3×3=9

PUSH B, POP PSW, CALL FOOOH

(b) With a suitable diagram, show how the instruction RST 6 (F7 H) is implemented. 5

53 (IE 501) MPMC/G

- (c) State the functions of all the pins present in control logic of 8255 A peripheral device.
- 6. (a) Explain the working of a typical successive Approximation A/D converter with the help of its block diagram. 10
 - (b) Specify the no. of times the following loop is executed. 5×2=10

(i) MVI A, 00H Loop \rightarrow DRA A JNZ Loop

(ii) MVI A, 15H Loop \rightarrow DCR A JNZ Loop

(iii) LXI H, 0005 H Loop \rightarrow DCX H JNZ Loop

(iv) MVI A, 02H Loop \rightarrow RLC JNC Loop

(v) MVI A, FE H Loop \rightarrow INR A JNZ Loop

53 (IE 501) MPMC/G

Contd.

- 7. (a) Explain how the 8237 DMA controller is used for high speed data transfer between system memory and a peripheral device. 10
 - (b) Write an Assembly Language program for 8085 to blink on LED continuously with a delay of 100 ms.

OR

Draw the block diagram of 8279 Programmable Keyboard/Display Interface Device and explain the function of each of the major blocks.