53 (IE 403) LSSI

2018

LINEAR SYSTEM AND SIGNAL

Paper: IE 403

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

- 1. (a) Determine the power and RMS value of the following signals 6 $y(t) = 5\cos(5t + \pi/3) \qquad y(t) = 10 * \cos 5t * \cos 10t$
 - (b) Determine the causal signal x(n) having the z-transform

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

(c) List the 3 properties of convolution.

(d) Prove that
$$\delta(n) = u(n) - u(n-1)$$
.

5

2. (a) A discrete time causal system has transfer function

$$H(z) = \frac{(1-z^{-1})}{(1-0.2z^{-1}-0.15z^{-2})}$$

- (i) Determine the difference equation of the system.
- (ii) Show poles and zeros diagram.
- (iii) Find the impulse response.

4+3+3

- (b) What are the conditions for a system to be LTI system?
- (c) Define symmetric and anti-symmetric signals. 5
- 3. (a) A discrete-time signal $x[n] = \{5, 2, 0, 5, -1, 3, 6, 8, 2.5, 4\}$ Sketch and label each.
 - (i) x(-n)
 - (ii) Odd part of x(n-1)

(iii)
$$x(n-2)$$

(iv)
$$x\left(\frac{n}{2}\right)$$

(v)
$$x(n-2) \cdot \delta(n-2)$$

 $5 \times 2 = 10$

- (b) State the significance of impulse response. 5
- (c) When a system is said to be memoryless? Give an example.
- 4. (a) Compute the convolution of these pairs of signals 5+5
 - (i) $x(n) = \{1, 0, 2, 3, 6\}$ $h(n) = \{1, 0, 4, 3, 5, 1\}$
 - (ii) $x(n) = \{1, 1, 2\}, h(n) = u(n)$
 - (b) What is the relationship between Fourier transform and Laplace transform?
 - (c) Prove that $x(t) \cdot \delta(t t_0) = x(t_0) \cdot \delta(t t_0)$.

6.	(a)	What is Aliasing?
	(b)	Write the 3rd order difference equ

(b) Write the 3rd order difference equation. 5

(c) Draw the following signals 5
(i)
$$u(t) - u(t-10)$$

(ii) $2 \cdot n \cdot u(n-1)$

(d) Determine whether the given signal is energy signal or power signal. And calculate its energy or power $x(t) = e^{-2t} \cdot u(t)$.

(b) Check whether the following system is static or dynamic and also causal or non-causal.

$$y(n) = x(2n) 5$$

(c) Verify the linearity of the system $y(t) = x(t^2)$ $y(n) = n \cdot x(n)$

(d) Find the periodicity of
$$x(t) = 4\cos 5\pi t$$

and $x[n] = 4\cos 0.5n$.

5

5