Total number of printed pages-7

ISAS (IE 403) LSAS

2014

LINEAR SYSTEMS AND SIGNALS

Paper : IE 403

Full Marks: 100

Pass Marks : 30

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Determine the fundamental period of the following signals if they are periodic

 $1\frac{1}{2} \times 2 = 3$

(*i*)
$$x[n] = e^{j(2\pi/3)n}$$

(*ii*) $x(t) = 3\cos 4t + 2\sin(\pi t + 2)$

DIRARI (EDA Contd.

(b) Determine the power and energy of the following systems and conclude whether they
 are power and energy signals 2×2=4

 $\mathbf{x}(t)$

1 2245

$$(i) \quad x(t) = A e^{j w_0 t}$$

(*ii*)
$$x(t) = 10 \cos(50t + \pi/3)$$

(c) The signal x(t) is shown below :

-4 -2 0Draw the sketch of y(t) = 2x(t/2) + x(2t-1) 3

(d) Show that the moving average system described by

$$y(n) = \frac{y}{3} [x[x] + x[n-1] + x[n-2]]$$
 2

is a BIBO stable.

(e) Determine whether the following signal is
 (i) Causal (ii) linear (iii) time invariant and
 (iv) memoryless.

$$y(n) = x(n) - nx(n-1)$$

53 (IE 403) LSAS/G

2. (a) Evaluate the following : $2 \times 3=6$ periodic signal shown below

(i)
$$\int_{0}^{5} \delta(t+3) e^{-t} dt$$

(ii)
$$\int_{-\infty}^{\infty} (t-3)^2 \delta(t-3) dt$$

(iii)
$$e^{-at}u(t) * e^{-bt}u(t)$$

period T and fourier series deefficients C. (b) Determine the convolution signal using (i) graphical procedure and Determine the convolution of the following (ii) matrix convolution method 5+3=8

$$x_1[n] = [1, 3, 2, 5]$$

 \uparrow
 $x_2[n] = [2, 4, 3, 7]$

3

53 (IE 403) LSAS/G

3. (a) Find the trigonometric fourier series for the periodic signal shown below : 8

(b) If x(t) is a periodic signal with fundamental period T and fourier series coefficients C_n , derive the fourier series coefficients of the following signals in term of C_n . 2×4=8

(i)
$$x(t+t_0)+x(t-t_0)$$

(*ii*) $Re\{x(t)\}$

(c) Determine the fourier series representation for $x(t) = 2 \sin(2\pi t - 3) + \sin 6\pi t$. 4

4. (a) Find the fourier transform of the following signal $2 \times 3=6$

(i)
$$sgn(t)$$

(ii) $e^{-|t|}$

53 (IE 403) LSAS/G

4

(b) If F[x(t)] = X(jw) prove the following: $2 \times 3 = 6$

(i)
$$F[x(t-t_0)] = e^{-j\Omega t_0} X(jw)$$

(ii)
$$F[x(at)] = \frac{1}{|a|} X(j\Omega/a)$$

(c) Find the inverse fourier transform of the following : 2×4=8

(i)
$$X(jw) \cdot \frac{j\Omega}{(3+j\Omega)^2}$$

(*ii*)
$$X(e^{jw}) = 1 + 2e^{-jw} + 2e^{-j2w} + 3e^{-j3w}$$

5. *(a)*

Find the Laplace transform and ROC of the
following signals $2 \times 5 = 10$

(i)
$$x(t) = e^{-3t}u(t) + e^{-2t}u(t)$$

$$(ii) \quad x(t) = -e^{-at}u(-t)$$

53 (IE 403) LSAS/G

Contd.

(b) Find the inverse Laplace transform of the following : $2 \times 5 = 10$

(i)
$$X(s) = \frac{1 + e^{-2s}}{3s^2 + 2s}$$

(*ii*)
$$X(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$$

- (a) State sampling theorem. Also discuss aliasing by taking example. 1+3=4
- (b) The signal $x(t) = 10 cos(10\pi t)$ is sampled at a rate of 8 sample per second. Plot the amplitude spectrum for $|\Omega| \le 30 \pi$. Can the original signal be recovered from samplest ? Explain. 8
- (c) Determine the Nyquist sampling rate and Nyquist sampling interval for the following signals

(i)
$$x(t) = sinc^2 (200\pi t)$$
 $2 \times 4 = 8$

(ii)
$$x(t) = sinc(200\pi t) + 3sinc^2(120\pi t)$$

53 (IE 403) LSAS/G

6.

6

- 7. (a) State and prove the Parseval's theorem using Z transform. 8
 - (b) Determine the Z-transform of the following signal 6

$$x(n) = \frac{1}{2}(n^2 + n)(\frac{1}{3})^{n-1}u(n-1)$$

(c) Find the inverse Z-transform of the following:6

$$X(Z) = \frac{1}{1+3Z^{-1}+2Z^{-2}}, \text{ ROC} |Z| > 2$$

100