53 (IE 401) ELMC

2017

ELECTRICAL MACHINES

Paper : IE 401

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Why is the transformer core laminated? Explain with proper justification. 5
 - (b) Derive an expression for the e.m.f. induced in a transformer winding. Show that e.m.f. per turn in primary is equal to e.m.f. per turn in the secondary.

5

(c) A voltage $v = 200 \sin 314t$ is applied to the transformer winding in a no-load test. The resulting current is found to be $i=3\sin(314t-60^{\circ})$. Determine the core loss and r.m.s value of the exciting current.

- 2. (a) Describe the constructional details of commutator of a dc machine. 5
 - (b) Develop the circuit model of a dc machine. 5
 - (c) A dc shunt generator gives an opencircuit voltage of 240 V. When loaded, the terminal voltage falls to 220 V. Determine the load current in case armature-circuit and field-winding resistance are 0.1Ω and 50Ω respectively. Neglect the effect of armature reaction.
- 3. (a) Write the analogy between transformer and induction motor. 5
 - (b) Derive the expression of frequency of rotor winding in case of an induction motor.
 - (c) A 3-phase, 50Hz induction motor has full-load speed of 960rpm. Calculate (i) number of poles (ii) slip frequency (iii) speed of rotor field with respect to rotor structure; with respect to stator structure; and with respect to stator.

- 4. (a) Draw the combined space and timephasor diagram for a cylindrical-rotor
 alternator with armature current
 lagging the excitation e.m.f. Discuss
 about the various parameters involved
 in it.
 - (b) Explain how open-circuit test is conducted on a synchronous machine.

 5
 - (c) A 3-phase, 17.32kVA, 400V, star-connected alternator is delivering rated load at 400V and at 0.8 power factor lag. Its synchronous impedance is $(0.2+2j)\Omega$ per phase. Find the load angle at which it is operating.
- 5. (a) What is yoke, pole core, pole shoe in a dc machine? What purpose do they serve? Explain with a suitable diagram.
 - (b) What should be the value of chording angle for eliminating (i) third harmonics (ii) fifth harmonics?
- 6. (a) Explain why a single-phase motor has no starting torque?

3

(b) What is a resistance split-phase induction motor?

- (c) Describe the basic operating principle of the stepper motor.
- 7. (a) A single-phase, 230V, 50Hz, 4 pole, capacitor-start induction motor has the following standstill impedances: 10

 Main winding $Z_m = (6+4j)\Omega$ Auxiliary winding $Z_a = (8+6j)\Omega$ Calculate the value of starting capacitor required to produce 90° phase difference between the currents in the main and auxiliary winding.
 - (b) A 5kVA, 1000/200V, 50Hz single phase transformer gave the following test results:

Open-circuit test (l.v. side): 200V, 1·2A, 90W Short-circuit test (h.v. side): 50V, 5A, 110W Compute the parameters of the approximate equivalent circuit referred to l.v. side.