Total number of printed pages-5

53 (IE 303) EEMD

2017

ELECTRICAL ENGINEERING MATERIALS AND DEVICES

Paper : IE 303

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Discuss how the effect of temperature on resistance varies for the following types of materials — 10
 - (i) Pure metals
 - (ii) Insulators and semiconductors
 - (iii) Alloys.

Draw necessary diagrams.

Contd.

(b) Two conductors, one of copper and the other of iron, are connected in parallel and carry equal currents at 25°C. What proportion of current will pass through each if the temperature is raised to 100°C? The temperature co-efficients of resistance at 0°C are 0.0043/°C and 0.0063/°C for copper and iron respectively.

- (a) What is drift velocity of electrons in a conductor material ? Derive an expression for drift velocity. Also obtain the relation between mobility and conductivity. 2+5+3=10
 - (b) A conduction wire has resistivity of 1.54×10^{-8} ohm-m at room temperature. There are 5.8×10^{28} conduction electrons per m^3 . Calculate — 5
 - (i) The mobility and relaxation time of the electrons.
 - (ii) The average drift velocity of the electrons when the electric field applied to the conductor is 1 volt. cm^{-1} .

2

 (c) How high resistivity materials are divided in groups according to their applications ? Discuss about any one application of high resistivity materials.
5

- 3. (a) From the concept of energy band, differentiate between insulator, conductor and semiconductor. 10
 - (b) The conductivity of an intrinsic semiconductor is given by —

$$\sigma_i = \eta_i e^2 \left(\frac{\tau_e}{m_e} + \frac{\tau_n}{m_n} \right)$$

Derive the above relation.

(c) Calculate the Hall voltage across the width of a semiconducting specimen from the following data — 5

Width of specimen = 0.1m,

thickness of the specimen = 0.01m,

field applied perpendicular to width and length = 0.6T,

Current flowing lengthwise = 10mA,

Hall co-efficient = $3 \cdot 8 \times 10^{-4} m^3 / C$.

3

53 (IE 303) EEMD/G

Contd.

5

- 4. (a) Make comparisons between ionic crystals and valence crystals. 5
 - (b) What are the quantities that determine the physical behaviour of a given material ? 5
 - (c) Calculate the kinetic energy, the potential energy and the total energy of an electron in the ground state of a hydrogen atom according to the theory of Bohr.
- 5. (a) Write and explain Gauss' Theorem. 5
 - (b) What is the difference between ionic and electronic polarization ? 5
 - (c) Consider two co-axial metal cylinders of radii R_1 and R_2 . The space between them is filled with a dielectric with a relative dielectric constant \in_r . The potential difference applied between the two cylinders is *V volts*. Find the charge on the cylinders and the capacitance of the system per meter length.

10

6. (a) Derive the expression of complex polarizability. 10

4

53 (IE 303) EEMD/G

- (b) Consider a parallel plate condenser with a lossy dielectric between them. At an angular frequency ω let the dielectric be characterized by a complex dielectric constant $\in_r^* = \in_r' - j \in_r''$. The area of the plates is $1m^2$, the distance between them 1m. For an applied voltage $V(t) = V_0 \cos \omega t$ show that the current through the lossy condenser is given by $i(t) = (\in_0 \in_r'' V_0) \cos \omega t - (\in_0 \in_r' V_0 \omega) \sin \omega t$.
- (a) Classify the magnetic materials. 5
 - (b) What is remanent flux density ? 5
 - (c) The magnetic field strength in a piece of copper is $10^{6}A/m$. Given that the magnetic susceptibility of copper is -0.5×10^{-5} , find the fluxdensity and the magnetization in the copper.

10

53 (IE 303) EEMD/G

7.

400