

CENTRAL

TRAL INSTITU

53 (IE 301) NWTH

2019

NETWORK THEORY

Paper: IE 301

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Choose the correct answer from the given problems: 1×8=8
 - (A) A capacitor has a capacitance of $5\mu F$. Calculate the stored energy in it if d.c. voltage of 100V is applied across it.
 - (i) 2.5×10^{-2} joule
 - (ii) 5×10^{-2} joule
 - (iii) 2.7×10⁻² joule
 - (iv) 5 joule.

- (B) Energy per unit charge is ———.
 (i) power (ii) voltage (iii) current (iv) capacitance (Fill in the blank)
- (C) In case of ideal current sources, they have
- zero internal resistance
- i) low value of voltage
- (iii) large value of current
- infinite internal resistance
- (D) With some initial charge at t = 0⁺ a capacitor will act as
 (i) open circuit (ii) short circuit (iii) voltage source (iv) current
- (E) The circuit is said to be in resonance if the current is _____ with the applied voltage.
- (ii) in phase (ii) out of phase (iii) 45° out of phase (iv) 90° out of phase. (Fill in the blank)
- (F) The concept on which superposition theorem is based is
 (i) Reciprocity (ii) Duality (iii) Nonlinearity (iv) Linearity

- (G) Kirchoffs law is not applicable to circuits with

 (i) Lumped parameters (ii) Passive
- (i) Lumped parameters (ii) Passive elements (iii) Distributed parameters (iv) Non-linear resistances.
- (H) Millman's theorem yields
- (ii) Equivalent resistance (iii) Equivalent impedance (iii) Equivalent voltage source (iv) Equivalent voltage or current source.
- (b) Find the equivalent capacitance of the circuit shown between X-Y.

(c) Find the equivalent star network.

53 (IE 301) NWTH/G

(d) Find total current I_T , current through R_1 and R_2 if $R_1 = 10\Omega$, $R_2 = 20\Omega$ and V = 50V

(e) Obtain the value of R in the circuit

(f) Find the equivalent current source for the circuit

(a) Determine R_{in} using Star-Delta transformation in network shown. 6

(b) Find the current through each resistor of the circuit shown in the figure using nodal analysis.

(c) Reduce the circuit between A and B.

53 (IE 301) NWTH/G

CI

3. (a) Use mesh analysis to determine what value of V_2 in the network in the figure causes the voltage V = 0V across 20Ω .

(b) Determine the current through load resistor R for the network shown below:

(a) Obtain the Thevenin's equivalent of network shown below in between A and B. Find V_0 .

Çī.

(a) Define the terms:

6

- Resonance
- Q-factor

(ii)

- (iii) Half-power frequency
- (iv) Bandwidth.
- (b) Show that for a series RLC resonant circuit the selectivity $Q_0 = \frac{yv}{f_2 - f_1}$, where f_0 is resonant frequency and f_1 , f_2 are half-power frequency.

6 For the series RLC circuit of figure power frequency, bandwidth and quality below find the resonant frequency, half

9

- (a) output time response of voltage across the capacitor. underdamped oscillatory case. Draw the overdamped, critically damped and For series RLC circuit (without voltage source) find the response of
- 6 In the network shown below assuming all initial conditions as zero, find

$$i_1, i_2, \frac{di_1}{dt}, \frac{d^2i_1}{dt^2}$$
 and $\frac{d^2i_2}{dt^2}$ at $t = 0^+$ 10

 $C \bigotimes_{R_1} \frac{R_2}{R_2}$
 $i_1(+)$
 $i_2(+)$
 $i_2(+)$

53 (IE 301) NWTH/G

53 (IE 301) NWTH/G

00

9

- 8. (a) Give the advantage of 3-phase system.
- (b) Find the reading on the wattmeter when the network is connected to a symmetrical 3-phase 440V supply as shown in figure. Neglect electrostatic effects and instrument losses. The phase sequence is RYB.

(c) A series RL circuit has $R = 25\Omega$ and $X_L = 32\Omega$. It is connected in parallel to a capacitor of $100\mu F$ and the combination is connected across a 200V, 50Hz supply. Find the current in each branch.

- 53 (IE 301) NWTH/G
- 10

(d) Using Laplace transform determine the current in the circuit when the switch S is closed at t = 0. Assume zero initial condition.

