Total number of printed pages-7

53 (IE 301) NWTH

2018

NETWORK THEORY

Paper : IE 301

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) What are the active elements and passive elements? A 4.0 Ω resistor has a current $i = 2.5 \sin \omega t$. Find the voltage, power and energy over one cycle. $\omega = 500 \text{ rad/s}$. 2+6=8

Find the equivalent resistance of the circuit. 5

(c) How a voltage source can be converted into current source and current source can be converted into voltage source ? 7

2. (a)

(b)

Find the current through 1Ω resistor. 10

2

(b) Obtain the response of an RL circuit to the following inputs.

- (i) Unit impulse
- (ii) Unit step
- (iii) Unit ramp

3+3+4=10

3. (a)

At $t = 0_{-}$, just before the switch S is turned on, $V_C = 50V$. Obtain the current and charge transients. 5

(b) A series RLC circuit with $R = 100\Omega$, L = 0.1H, $C = 10\mu F$, has an initial change on the capacitor of $Q_0 = 2.67 \times 10^{-3}C$. A switch is closed at t = 0, allowing the capacitor to discharge. Obtain the current transient. 10

3

Contd.

53 (IE 301) NWTH/G

(c) Define the terms — driving point impedance and transfer impedance.

5

- 4. (a) If $V_1 = 25.0 < 143.13^\circ$ and $V_2 = 11.2 < 26.57^\circ$, find the ratio V_1 / V_2 and the sum $V_1 + V_2$. 5
 - (b) Find the two elements in a series circuit if the current and voltages are $i = 10 \cos (5000t - 23.13^{\circ})(A)$ and $v = 50 \cos (5000t + 30^{\circ})(A)$ 5
 - (c) Find P delivered from a sinusoidal voltage source with $v_{eff} = 110V$ to an impedance of z = 10 + j8. Find the power factor. 5
 - (d) A certain passive network has equivalent impedance z = 3 + j4R and $v = 42 \cos (2000t + 20^\circ)$. Find P and Q.

4

53 (IE 301) NWTH/G

5. (a) $5\Omega \qquad 2\Omega \qquad 10\Omega$ $I_1 \qquad I_2 \qquad I_2 \qquad I_3 \qquad 5\Omega$

Obtain the current I_1 , I_2 , I_3 using mesh analysis. 7

Find the current through the 1Ω resistor using superposition theorem. 7

Using Thevenin's theorem obtain the current I_{RL} . 6

53 (IE 301) NWTH/G

Contd.

5

6. (a) Obtain the Norton's equivalent circuit for the following network. 5

(b)

Obtain value of R_L for maximum power transfer. 5

(c) State and explain compensation theorem and Tellegen's theorem.

10

7. (a) Define the terms — self inductance, mutual inductance, coupling coefficient.
6

53 (IE 301) NWTH/G 6

- (b) When one coil of a magnetically coupled pair has a current $5 \cdot 0 A$, the resulting fluxes ϕ_{11} and ϕ_{12} are $0 \cdot 2 mWb$ and $0 \cdot 4 mWb$ respectively. If the turns are $N_1 = 500$ and $N_2 = 1500$, find L_1 , L_2 , M and the coefficient of coupling.
 - 8
- (c) What are the advantages of three phase system over single phase system.

 $\mathbf{7}$

6

