Total No. of printed pages = 8

FPT-302/EOFI-I/3rd Sem/2017/N

ELEMENTS OF FOOD ENGINEERING - I

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Attempt questions from PART - A and PART - B as per the following instructions.

PART - A

Attempt all questions.

5×5=25

(a) MCQ type questions :

- 1×5=5
- (i) Which of the following is the extensive property of a thermodynamic system?
 - (a) Pressure (b) Volume
- (c) Density
- (d) Temperature

Turn over

(a) I	internal energy	(b)	Volume
(c) ^	Total mass	(d)	Temperature
	ch of the follow anger?	ing-	is not a heat
(a) l	Boiler	(b)	Condenser
(c)	Pump	(d)	Car radiator
(iv) Hear	t transfer is		
(a)	Inversely prop temperature gra		
(b)	Directly proport surface area	ional	to the normal
(c)	Inversely prop thickness of the which the heat	plai	n slab through
(d)	None of these		
(v) The	ermodynamic stat	le fu	nctions are
(a)	Internal energy	(b)	Pressure
(c)	Volume	(d)	All of these

(2)

215/FPT-302/EOFI-I

(ii) Which of the following is the intensive variable of a thermodynamic system?

(0)	FIII	up the gap:	1×2=2
	(i)	486K (Kelvin) is equal to	— °C.
ment to	(ii)	The S.I unit of thermal conduct	ivity is
	(iii)	The S.I unit of heat flux is -	Harry.
teni P	(iv)	is the driving force of transfer.	of heat
324	(v)	No net change of heat in process.	dicates
(c)	Obje	ective type questions :	1×5=5
	(i)	What is the formula of R134a	?
	(ii)	Define isobaric process.	
	(iii)	What is isochoric process?	
redmun	(iv)	What is the correlation between C_{\star} ?	C _p and
	(v)	What is refrigeration load?	
(d)	Опе	word questions :	1×5=5
	(i)	Evaporator, compressor, condens expansion valve belongs to cycle?	
215/FPT-	302/E	OFI-((3) [Tur	n over

- (ii) Which law governs heat transfer by conduction?
- (iii) Energy in which form is reached from the sun to the earth's surface?
- (iv) Which fluid is used in the refrigerator?
- (v) What is the driving force of heat transfer?

(e) Match the columns:

1×5=5

Group II		
1. Refrigeration		
2. Emissivity		
3. 2nd law of thermodyna- mics		
4. Nusselt number		
C D		
4 2		
2 4		

(iv) 3

PART - B

Attempt any five questions from the following: 5×9=45

- 2. (a) State First law of Thermodynamics and give the mathematical expression of it. How work done can be calculated? 4+2=6
 - (b) Define enthalpy and entropy of a thermodynamic system.
- (a) State Zeroeth law of thermodynamics. State and explain second law of thermodynamics.
 - (b) What is heat engine? Prove that the thermal efficiency of a heat engine 1+4=5

$$\eta = 1 - Q_{\gamma}/Q_{\gamma}$$

Where Q_2 = total amount of heat released from heat engine to external heat reservoir or sink and Q_1 = total amount of heat absorbs or supplied to the heat engine from a external reservoir or source.

4. (a) Find the rate of heat loss through a stainless steel slab 10 cm thick which is maintained 100°C on hot side and 30°C on the cold side. The thermal conductivity of steel is 16.37 w/m/° C.

- (b) A pipeline, 150/160 mm diameter carries steam. The pipe is insulated with a 0.03m thick layer of material with a thermal conductivity of 0.20 w/mK where thermal conductivity of the pipe material is 50 w/mk. Insulation of pipe reduces the external temperature of insulation to 80°C. Find the rate of heat loss from a length Im of pipeline. Given that the temperature of the inside surface is 120°C.
- (a) What is Nusselt number? Draw the concurrent flow and counter current flow heat exchanger. Draw also the temperature profile (T-X) diagrams of concurrent and counter current flow heat exchanger.

1+2+2=5

- (b) A dilute orange juice is heated in a double pipe heat exchanger from 28°C to 75°C by heat exchanging with hot water which enters the heat exchanger in counter current direction and is cooled from 95°C to 85°C. Calculate the log mean temperature difference (LMTD).
- 6. (a) What are the main components of a shell and tube heat exchanger? Draw a shell and tube heat exchanger. 2+2=4

- (b) A fluid of temperature 15°C is flowing over a flat surface maintained at 152°C. If the cross sectional area of the flat surface is 0.20m³ and the rate of heat transfer from the flat surface to the fluid is 800W, calculate the convective heat transfer coefficient. 5
- 7. (a) Define absorptivity, trasmittivity and reflectivity of the body. What are their correlations?

 3+1=4
 - (b) A piece of meat cube is kept in a deep freezer maintained at -18°C. Calculate the radiative heat transfer if the meat cube is at 25°C and has an average area of 0.045m². The emissivity of the meat cube is taken as 0.82. Take Stefan-Boltzmann's constant = 5.67 × 10⁻⁴w/m²k⁴.
 - 8. (a) Prove the following relationship: 2 $(COP)_p = 1 / (COP)_E = (COP)_p + 1$
 - (b) A machine working on a Carnot cycle operates between 308K and 268K. Determine the COP when it is operated as the following:
 - (i) A refrigerating machine
 - (ii) A heat pump
 - (iii) A heat engine

(c) In an air blast freezer operating at -30°C, blocks of fish is -2.2°C and the moisture content of fish is 82%. The thickness of the fish block is 0.0508m and the convective heat transfer coefficient (h) is 20 w/m²K. Calculate the freezing time in hour required to freeze the fish blocks. Assume density of unfrozen fish as 1050 kg/m³, thermal conductivity of the frozen fish (k) as 1.025 w/mK, latent heat of water to ice as 335 KJ/kg and shape factors for infinite slab, P = 1/2 and R = 1/8.